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 سا01المدة:                              في مادة: الرياضيات  الفرض الثاني أولى ج م ع ت              المستوى:        

 

 : التمرين الأوّل 

     x وy 2 :أعداد حقيقية حيث 1x      0و 6y  
1 : (بين أن1 3x  
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0 : (أثبت أن2 1z ستنتج المقارنة بينثم اz   2وz 3وz . 

 : التمرين الثاني
 دون رمز القيمة المطلقة حيث: Bو Aأكتب كل من  (1

                                       
1 2 5A    و 
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7 4 4 2 7 7 2B        

 باستعمال المسافة حل المعادلة والمتراجحة التاليتين:(2

                                                      3 1x   ,2 4x x  . 

 تراجحة التالية:باستعمال برهان فصل الحالات حل الم(3

                                                  3 6 2 6 7x x    

                                                   

 : لثالتمرين الثا
  : أكمل الجدول (1

 القيمة المطلقة المسافة  الالمج الحصر cالمركز rنصف قطر
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 ن03.5  :التمرين الأوّل 

     
x وy 2 :أعداد حقيقية حيث 1x   0و 6y 

 

1 : (اثبات أن1 3x   01 

2 لدينا  1x       نحسب حدا المجالa وb 
2 1 1a c r     2و 1 3b c r     
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.x  وy 1 :أعداد حقيقية حيث 3x  0و 6y   
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 ن 06.5              : التمرين الثاني

Bو Aأكتب كل من  (1
 

 دون رمز القيمة المطلقة حيث:

   
1 2 5A    و 

2

7 4 4 2 7 7 2B        

1لدينا  2 5 0    1ومنه 2 5 2 5 1A           0.5  

7لدينا 4 0  7ومنه 4 4 7  
               01

 

4ولدينا  2 7 0  4ومنه 2 7 2 7 4   

7ولدينا  2 0  ومنه 
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 باستعمال المسافة حل المعادلة والمتراجحة التاليتين:(2

3 1x  
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                         xفاصلتها Mو   5فاصلتها  Aنضع
3 1x   1تكافئAM  

ومنه مجموعة حلول المعادلة  هي  2;4S  

2 4x x  .        01        

                          xفاصلتها M 4فاصلتها B و -2ا فاصلته Aنضع
2 4x x   تكافئAM BM 

أي  حلول المتراجحة   هي Aتكون اقرب لـ  Mومنه ;1 

 باستعمال برهان فصل الحالات حل المتراجحة التالية:(3

3 6 2 6 7x x    
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3حل المعادلة  6 2 6 7x x    
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 لية  نفصل الحالات التا
لما   (1الحالة  ;2x  

3فإن  6 2 6 7x x    12تكافئ 5 7x   1تكافئx         
و   1 ;2  3حل للمعادلة   1ومنه 6 2 6 7x x    
لما   (2لة الحا 2;3x 
3فإن  6 2 6 7x x    7تكافئx   7تكافئx          03 
و   7 2;3  3ليس حل للمعادلة -7ومنه 6 2 6 7x x    

لما   (3الحالة  3;x  3فإن 6 2 6 7x x    5تكافئ 12 7x    19تكافئ
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 ن10  الثالث التمرين

 08.75  : (اكمال  الجدول 1
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  التبرير 

 : التبرير (1

لدينا  3;11x   نحسب المركزc و نصف القطرr  
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  : تبريرال (2

5bلدينا   c r   1وc   1ومنه 5r  

4cإذن r   3و فإنa c r    

 : التبرير (3

لدينا  8;20x  نحسب المركزc القطر و نصفr  
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  : (التبرير4

2لدينا  3
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