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      . 

:   لدييا  1lim lim t

n
n t

S te e
 

  و ذلو بوضع   : 1t n   أي  :

n

t



 

  

:     و ميُ نجد 
1lim n

n
S e


 ٌلأ  :lim 0t

t
te


 . 
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 2025  -2024السنة الدراسية :                  وطــني             وزارة الـدفـاع ال
 أركان الجيش الوطني الشعبي 
 ث  ـالـي الثـلاث ـتبـار الثـإخ                                                دائرة الإستعمال و التحضير   

 علوم تجريبية   ثانوي      الشعبة:   ثالثة :المستوى                                 مديرية مدارس أشبال الأمـة    
                                                      

 " ي الموضوع الثان"  مادة الرياضيات   تبـار ـحيح النموذجي لإخالتص

 
 م عناصــر الإجـــابة 

 مجزأة  كاملة
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 ن(  4حل التمرين الأول : )
 . يمكن الاستعانة بشجرة الإحتمالات ) 

)  نجد :   (  1 )
7 1 3 1 7 3

10 6 10 4 60 40
P A

   
=  +  = +   
   

)  و منه   )
23

120
P A  المطلوب . هو   =

)نجد :     -      )
7 1 3 1 7 3

10 2 10 2 20 20
P C

   
=  +  = +   
   

)و منه :    )
1

2
P C =  . 

)" الكرية المسحوبة بيضاء "  ، أي نحسب الإحتمال الشرطي :   B( نسمي الحدث  2 )AP B  . 

)و منه :         )
( )
( )

7

60
23

120

A

P B A
P B

P A


= )أي نجد :   = )

14

23
AP B =  . 

  الكيس به )( )3n+  . كرية 

( لدينا :  1
( )

( )( )

1 1

3

2

3

2 6

3 2

n

n

n

A A n
P

A n n+


= =

+ +
  . 

( نجد :  2
2

6 6
lim lim lim 0n
n n n

n
P

n n→+ →+ →+
= = =     . 

 في فإن حدث سحب  كلما كان عدد الكريات السوداء كبيرا بالقدر الكا  التفسير :  
 كريتين من لونين مختلفين يؤول إلى الحدث المستحيل .                        

 

 ن( 5)حل التمرين الثاني

( نجد :  1
2

8

9
u و        =

3

8

9
u =  . 

2لدينا :       1 32u u u 2و      +

2 1 3u u u    أي أن المتتالية( )nu  . ليست حسابية و لا هندسية 

n( لدينا :  2
n

u
v

n
=  . 

لدينا :     -أ 
( )
( )

( )
( )

1

2 4

2 2 2 1 23 3

1 1 3 3 1 3

n
n n n

n

n
u

n u n u un
v

n n n n n n
+

+ 
  + ++ = = = = 

+ + +
أي :  و منه :   

1

2

3
n nv v+ =   

)و منه :   )nv   متتالية هندسية اساسها
2

3
و حدها الأول   

1

2

3
v =  . 

نجد :    -ب 
2

3

n

nv
 

=  
 

  . 
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nلدينا :  
n

u
v

n
n.و منه :    = nu n v=   : و بالتالي

2

3

n

nu n
 

=  
 

  . 

لدينا :    -ج 
2

3

n

nu n
 

=  
 

أي :   
2

ln ln
3

n

nu n
  

=   
   

و منه :    
2

ln ln ln
3

nu n n
 

= +  
 

 

و بالتالي :        
ln 2

ln ln
3

n

n
u n

n

  
= +   

  
 هو المطلوب .  

)لدينا :     )
ln 2

lim ln lim ln
3

n
n n

n
u n

n→+ →+

  
= + = −  

  
، لأن :   

ln
lim 0
n

n

n→+
و   =

2
ln 0

3

 
 

 
  . 

)  إذن : بما أن :      )lim ln n
n

u
→+

= −   : فإنlim 0n
n

u
→+

=  . 

( لدينا :  3
2

3
n

n

n

n

u


1و منه :   = 2 33 3 3 ...... 3n

nS = + + +  ) مجموع متتالية هندسية ( .  +

إذن :       
3 1

3
3 1

n

nS
−

= 
−

)و بالتالي :    )11
3 3

2

n

nS +=  .  هو المطلوب  −

 

 ن(   4) :لث حل التمرين الثا 
 ( الإجابة الصحيحة هي )ب( 1

 التعليل :    
 ( الإجابة الصحيحة هي )أ(  2
 التعليل :   
 ( الإجابة الصحيحة هي )أ( . 3
 التعليل :   
 ( الإجابة الصحيحة هي )ب( 4
 التعليل :    
 

   ن(  7حل التمرين الرابع : ) 

 ( حساب النهايات :  1

      ( )
1 ln

lim lim ln 1
2x x

x
f x x x

x→+ →+

 
= −  = + 

 
  . 

       ( )
0

lim
x

f x


⎯⎯→

= −   : لأن ،
0

lim ln 0
x

x x


⎯⎯→
=   . 

0x: المستقيم   التفسير البياني      )مقارب لـ    = )fC  . 

قابلة للإشتقاق على   fالدالة    -( أ 2  0;+   : و لدينا( )
ln ln ln

ln 1 1
x x x x

f x x
x x

−
 = + − = +   

)و منه :         )
( )1 ln

1
x x

f x
x

−
 =  هو المطلوب .  +

 
 
 

 نلخص الإشارة في الجدول التالي :    -ب 
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0xبما أنه من أجل كل    -     :( ) 0f x    فإن الدالةf   متزايدة تماما على 0;+  . 

 :   fجدول التغيرات للدالة    - 

        

)( لدينا :  3 ) ( )( ) ( ): 1 1 1T y f x f= − أي :   +
( )

( )

1 1

1 0

f

f

 =


=

)و منه نجد  :    ) : 1T y x= −   . 

)لدينا :    - أ( 4 ) ( )1 1 0g f= )و منه إشارة   = )g x   : تكون كما يلي 

 
)إذن نستنتج أن وضعية    -  )fC    بالنسبة لـ( )T   تكون حسب إشارة( )g x   : أي أن 

       -  ( )fC   يقع تحت( )T   في المجال 0,1  . 

       -   ( )fC   يقع فوق( )T   في المجال 1;+  . 

      -    ( )T  يخترق  ( )fC   في النقطة( )1,0A  . 

)نلاحظ أن المنحنى    -ب  )fC   يغير من وضعيته بالنسبة للمماس في النقطةA   و منه هذه الأخيرة 

)هي نقطة الإنعطاف للمنحنى           )fC  . 

مستمرة و متزايدة تماما على   gالدالة    -ج  3.3,3.4   و
( )

( )

3.3 0,92

3.4 1,01

g

g






 أي أن :   

       ( ) ( )3.3 1 3.4g g    و منه فإن المعادلة( ) 1g x في المجال   تقبل حلا وحيدا   = 3.3,3.4  

 . 
)( لدينا :  5 ) ( ) 1g x f x x= − )أي :   + ) ( )1g x f x x− = )و منه فإن المعادلة   − ) 1 0g x − =  

)تكافئ        ) 0f x x− )أي المعادلة   = ) 1g x )ئ  تكاف  = )f x x=   لكن حسب ما سبق نعلم أن 

)المعادلة      ) 1g x )و منه فإن المعادلة   تقبل حلا وحيدا   = )f x x=   تقبل حلا وحيدا  

)إذن فإن المنحنى      )fC   يقطع المستقيم( )   في النقطة ذات الفاصلة  . 
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 ( الإنشاء و التمثيل :  6

 
 

)( لدينا :  7 )
ln

ln
2

x
h x x x

 
= − 

 
  . 

و منه :        
( ) ( )  

( ) ( )  

; 0,1

; 1;

h x f x x

h x f x x

 = − 


=  +

    

)  إذن :     )hC   ينطبق على( )fC   لما 1;x +   و( )hC   نظير( )fC    بالنسبة لمحور الفواصل 

لما                  0,1x   . 

مل بالتجزئة نضع :     باستعمال التكا  -( أ 8
( ) ( )

( ) ( ) 2

1
ln ;

1
;

2

u x x u x
x

v x x v x x


= =


  = =


 و منه :  

      2 2 2 2 2

1 11 1

1 1 1 1 1 1 1
ln ln

2 2 2 4 2 4 4

e ee e

x xdx x x x dx e x e e
     

= − = − = − +    
     

    

و منه نجد  :        
2

1

1
ln

4

e
e

x xdx
+

=  . 

)باستعمال تعريف الدالة الأصلية نبين أن الدالة    -ب    )
2

ln 2 ln 2x x x x x x−  هي دالة أصلية    +

)للدالة            )
2

lnx x   على 0;+  . 

)لدينا :        ) ( ) ( )
2

2 2

1
1 1 1

1 1 1
ln ln ln 2 ln 2

2 4 2

e e e
ee

A f x dx x xdx x dx x x x x x
+  = = − = − − +

    

و منه :       
2 2 5

.
4

e e
A u a

− +
=  . 

 


	الرياضيات

