
 

 

 

  التربية الوطنية  وزارة
  2025:  ماي  دورة                                                                        تجريبي امتحان بكالوريا 

 مستغانم  -ثانوية زروقي الشيخ بن الدين                                                         تقني  رياضي الشعبة : 

   د  30سا و    04المدة :                                                               الرياضيات  : ختبار في مادةا

  على المترشح أن يختار أحد الموضوعين التاليين :
 الموضوع الأول  

  نقاط)  04(   التمرين الأول 
 :  رالتبری مع الآتیة الحالات من حالة كل  في  الثلاثة الاقتراحات بین  من الوحید یحعین الاقتراح الصح

في لجنة الخدمات الإجتماعية يراد تشكيل لجنة تتكون من رئيس و نائبين (نائب أول و نائب ثاني) من بين ثلاث    )1
 امرأتين ، احتمال أن يكون هشام هو النائب الأول هو : رجال واحد اسمه هشام و
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على    )2 ،يحتوي صندوق  بيضاء  كرات  أربع  و  حمراء  كرات  عشوائيا    ثلاث  منه  مع    nنسحب  التوالي  على  كرة 
 احتمال أن تكون في السحب كرة بيضاء على الأقل هو :،  الإرجاع
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2حلا المعادلة    )4 5 2 0   z z z i  ذات المجهولz و مرافقه  z في  : هما 

1   أ) 5   i 1  و 5   i                   (5  ب  i 5 و  i              (2   جـi 2 و i  
 نقاط)  04.75(     التمرين الثاني 

  2نعتبر في المعادلة :  5 6 3 E x y.  
  بين أنه إذا كانت الثنائية )1 ,x y  حلا للمعادلة E  فإنx  2حل في ثم  3مضاعف للعدد  المعادلة E. 
عين الثنائيات الطبيعية  )2 ,x y لمعادلةا حلول E التي من أجلها يكونx   وy .أوليان فيما بينها  
   .9على  2nبواقي القسمة الإقليدية للعدد  nعين حسب قيم العدد الطبيعي  )أ  )3

بحيث  nعين قيم العدد الطبيعي  )ب  5 6 20255 1983 10 1448 2 9x y n    حيث  ,x y لمعادلة ا حلول E . 
  بحيث :  عين قيمة  )4
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  نقاط)  04.25( : لث التمرين الثا
( )nu  و nv  المتتاليتان العدديتان المعرفتان على*  1كما يلي

5
2

u   غير معدوم   أجل كل عدد طبيعي  و منn :  

   1 3 3
1n n

nu u
n    


*  حيث    و   3n nv n u . 

n  :  3nuغير معدوم   كل عدد طبيعيمن أجل برهن بالتراجع أنه  )1 . 

n :  غير معدوم   كل عدد طبيعي أجل من أنه بين  )2 
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)ثم استنتج اتجاه تغير   )nu  . 

)أثبت أن المتتالية  )أ  )3 )nv 1هندسية أساسها

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 .احسب حدها الأول  ثم 

nnثم احسب  nبدلالة nuو nبدلالة  nvأكتب عبارة  )ب 
lim u

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 ـ ) حتى تكون المتتالية م عين قي )ج )nv .متقاربة 
2  من أجل )4    ، احسب بدلالة n الجداء    :     1 23 3 3n nP u u u      . 

  نقاط)   07( : رابعالتمرين ال

I(  الجدول المقابل يمثل تغيرات الدالةg على   المعرفة   : بـ  2( ) 2 4 4
x

g x x e x    
أن المعادلة  تحقق  )1  0g x   5حلين أحدهما معدوم و الآخر تقبل 4    . 
)إشارة  جاستنت )2 )g x . 

II(   لتكن الدالةf   المعرفة على   : بـ 
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  ( )fC  المعلم المتعامد و المتجانس المستوي المنسوب الى تمثيلها البياني في( ; , )O i j
 

 .  
احسب ) أ  )1 

x
lim f x


و   
x
lim f x


. 
 بين أن المستقيم )ب       : y x  مقارب لـ  ( )fC  بجوار وضعه النسبي مع ادرس   ثم( )fC .    

x  :بين أنه من أجل كل عدد حقيقي  )أ  )2 
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x : 2من أجل كل عدد حقيقي  أنه بين ب)    2 1 0
x x

xe e
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  ثم شكل جدول تغيراتها. fالدالة اتجاه تغيراستنتج  ،  

 ـ x : من أجل كل عدد حقيقي  تحقق أنه ) ج   21"
2

x

f x e g x  أن استنتج  ثم( )fC .يقبل نقطتي انعطاف عينهما  

أرسم    )أ  )3  و( )fC . 
:  التي من أجلها يكون للمعادلة mين بيانيا مجموعة قيم الأعداد الحقيقة ع  ب)   lnf x m x   ثلاث حلول.  

  بـ :  المعرفة على  Fالدالة تحقق أن ) أ  )4      21 8 4
x

xF x x e x e    أصلية للدالة 
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:  بين أن  ب) 
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  .ثم فسر النتيجة هندسيا   

 انتهى الموضوع الأول 4من 2صفحة 



 

 

 

   الثانيالموضوع 

  نقاط)  4(   التمرين الأول 

 .3، 1،2، 0  تحمل الأرقام  حمراء  ات ي كر أربع  و  2، 1،2، 0،1تحمل الأرقام  خضراء  ات يكر  خمس على  كيسيحتوي 
  .ات متماثلة و لا نفرق بينها عند اللمسيكل الكر ،  2و  1و كريتين بيضاوين تحملان الرقمين

I( آن واحد .  في من الكيس ثلاث كريات نسحب عشوائيا  
 .” و تحمل أرقما فردية  مختلفة اللون مثنى مثنى ثلاث كريات  الحصول على  “A:   الحدثين نعتبر   )1

                   B“ 2الحصول على كرية خضراء واحدة فقط تحمل الرقم ”.   
  بين أن -  4

165
p A و    24

55
p A  .  

  عدد الأرقام الأولية المتبقية في الكيس.المتغير العشوائي الذي يرفق بكل عملية سحب Xليكن  )2
هي  Xبرر أن مجموعة قيم المتغير العشوائي  )أ  2;3;4;5.  

  أمله الرياضياتي  بين أنثم   Xحتمال للمتغير العشوائي لاعين قانون ا )ب   40
11

E x  . 

II( إرجاع   بدون ات على التوالي ويعشوائيا ثلاث كرتين البيضاوتين و نسحب منه يننزع من الكيس الكر. 
1  هو  ة لها نفس الرقمثو الثانية و الثال 0تحمل الرقم المسحوبة  أن تكون الكرية الأولى  احتمال بين   -

21
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  نقاط)  05(    الثاني التمرين 

I(  الدالة  لتكنfالمجال  المعرفة على 0, كما يلي  :    2 3
2 7
xf x
x





)و  )fC  المنسوب   تمثيلها البياني في المستوي

)الى المعلم المتعامد و المتجانس   ; , )O i j
 

  المستقيم  و    : y x  . 
          ( )nu 0  المتالية العددية المعرفة بحدها الأول 1u و من أجل كل عدد طبيعي  n : 1n nu f u  . 

 ها.على حامل محور الفواصل دون حساب 2uو 0u ،1u  حدودلجابة ثم مثل االإشكل على ورقة الأعد رسم  )أ  )1

n  :  1 من أجل كل عدد طبيعي برهن بالتراجع أنه  )ب  1
2 nu . 

 ـ )بين أن المتتالية )ج )nu ةتقاربثم استنتج أنها م  ا متناقصة تمام. 

n : 1من أجل كل عدد طبيعي أنه بين  )أ   )2
1 1 1
2 8 2n nu u
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: nمن أجل كل عدد طبيعي أنه استنتج  )ب 
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nn  استنتج ثم 
lim u

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II(  nv  حدودها تحقق : الحسابية المتزايدة تماما المتتالية     4 7log v + log v = 2 - 2log 2 . 
4  :   بين أن - 1v    7و 25v  ثم استنتج عبارة الحد العام لـ  nv . )  25ارشاد حدد قواسم العدد ( . 

 نقاط)  04.5( : لث التمرين الثا
I( المركبة   حل في مجموعة الأعداد  المعادلة:    21 2 3 5 25 0     z i z z . 

II( متجانسالمتعامد والمعلم الالمركب منسوب إلى   المستوي ; ,O u v
 

,النقط   نعتبر   ,AC B التي لواحقھا على الترتیب :   

 4من 3صفحة 
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العدد  اكتب )1 
  

C A
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z z
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 .AOBCو الرباعي   ABCطبيعة المثلث بدقة استنتج   ثم  على الشكل الآسي 

 عين )2    مجموعة النقطM لاحقةz )M   تختلف عنA وC ( من المستوي بحيث :  arg 2
 

   
A

C

z z k
z z

 .  

 .7على5nبواقي القسمة الإقليدية للعدد nأدرس حسب قيم العدد الطبيعي   أ) )3
  استنتج باقي قسمة العدد ب)     2025 1447A BZ Z  7على . 

n   :21نضع من أجل كل عدد طبيعي جـ)            n
n A A AS z z z.  

بحیث :   nعين قيم العدد الطبيعي  ثم nبدلالة  nSاحسب المجموع   -   24 3 0 7 nS n.  
  نقاط)  06.5( : رابعالتمرين ال

I(  المستوي منسوب إلى المعلم المتعامد و المتجانس( ; , )O i j
 

 . 
g  دالة معرفة و قابلة للإشتقاق على المجال 0,  : بـ    xg x =xlnx+ e -1 

 'gC  المشتقة التمثيل البياني للداالة'gللدالةg .  
 .gاتجاه تغيرالدالة استنتجبقراءة بيانية  )1
  ن المعادلة أبين  )2  0g x    0.3تقبل حلا وحيدا 0.4 . 
)إشارة  جاستنت )3 )g x . 

II( لتكن الدالة  f  المعرفة على المجال 0,   : بـ   2-xf x = e -1 lnx.  
  ( )fC  تمثيلها البياني في المعلم المتعامد و المتجانس.  

بين أن   )1 
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0
x
lim f x


  ثم احسب   
x
lim f x

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من المجال   x  بين أنه من أجل كل عدد حقيقي  )أ  )2 0,   :   
2

2
xef x g x
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;0  تماما علىمتزايدة  fاستنتج أن الدالة  )ب   

  تماما على متناقصة   و;   . ثم شكل جدول تغيراتها 

1بين أن   )أ   )3 11 1y x
e e
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 ـمعادلة  هي  )  ل )T منحنى مماس ال fC نقطة تقاطعه مع محور الفواصل.  في   

)أرسم   )ب  )T و( )fC ، نأخذ   0.56f   .  

:نضع غير معدوم   nعدد طبيعي  من أجل كل   )4
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I x xdx
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أن :بالتجزئة بين  التكامل باستعمال  - 
 
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n e
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1,1e  المجال من xجل كل أمن  علما أنه  )5     :  2
4

2 21
2

x xx e x      . 
) ـالمستوي المحدد ب مساحة الحيزل حصرا استنتج - )fC   0و المستقيمات التي معادلاتهاy    ،1x   1  وx e .  

 الثاني انتهى الموضوع  4من 4صفحة 
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