
    

 

  
 

4  صفحة  1  من 

 الجمهورية  الجزائرية الديمقراطية الشعبية

                                                             مديرية التربية لولاية الجزائر شرق 

   يما دورة:                                       امتحان بكالوريا التعليم الثانوي التجريبي               

  رياضيات:  ةالشعب

 سا  04المدة:           لرياضيات                                                                        اختبار في مادة : إ

 أن يختار أحد الموضوعين التاليينعلى المترشح 

 الموضوع الأول:

 ( نقاط 05): التمرين الأول 

    
  ( نقاط  04) : التمرين الثاني
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4  صفحة  2  من 

 

  ( نقاط 04): التمرين الثالث

 

  ( نقاط 07): التمرين الرابع

 

 



    

 

  
 

4  صفحة  3  من 

 الموضوع الثاني:

  ( نقاط 04): التمرين الأول 

 

  ( نقاط 05 ): التمرين الثاني
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4  صفحة  4  من 

  ( نقاط 04): التمرين الثالث

 
  ( نقاط 07): التمرين الرابع

 

 

 



2024 / 2023
 

 
 

 

 
 

 ولوع ال ــــــــــــــــــــــــــــضالمو

 

 يطلتنقا بةعداد المركالأ                                                  )طنقا 05  (ولتصحيح التمرين الأ

 

 

 
 

 

 

 

 

 يطلتنقا لحساباو عدادالأ                                                 )طنقا 04  (الثانيتصحيح التمرين 

 

   لموسم الدراس ي: ا                           

 اتـــــاضيالري ادةـــــــفي م تجريبيالبكالوريا لحل المفصل للا                   ا

 شعبة رياضياتثانوي ة لثلثااللسنة                 
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 يطلتنقا المتتاليات + بةعداد المركالأ                                   )طنقا 04  (لثالثتصحيح التمرين ا
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 )طنقا 07(حل التمرين الرابع 
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 ثانيوع الــــــــــــــــــــــــــــضالمو
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