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الأول التمرئو
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الثاني التمرئو

F للنقطة العمودي المسقط هي H و [BC] منتصف E لتكن ، AB = 6 و AE =
√

37 ، AD = DF = 2 حيث مستطيل ABCD I
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EB ، #    »

FH .
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AE : احسب ¶
.ÊAF الزاوية قيس استنتج ثم #   »

AF.
#   »

AE = 14 أن بين ·(
O,

#»

i ,
#»

j
)
والمتجانس المتعامد المعلم إلى المنسوب المستوي في 2

مجموعة (C1) لتكن و C(3, 1) و B(3, 3) ، A(1, 3) : النقط نعتبر
(C1) : x2 + y2 − 8x +2y +12 = 0 : حيث M(x, y) النقط

.r1 قطرها نصف و ω1 مركزها تعيين يطلب دائرة (C1) أن بين ¶

به. المحيطة (C2) الدائرة معادلة جد ثم B في قائم ABC المثلث أن بين ·

ذلك. برر ؟ متماستان (C2) و (C1) الدائرتان هل ¸

.B النقطة في (C2) الدائرة مماس (T) للمستقيم معادلة جد ¹

تقاطعهما. نقط جد ثم (C1) الدائرة يقطع (T) المستقيم أن بين º

.3 نسبته و A النقطة مركزه الذي h بالتحاكي (C1) صورة (C′) أوجد »

Ly
cé

e

M
Khmissti

⋆

⋆

Prof : For
lo

ul
.
A



النموذجية الإجابة
﷑التمرئوالأول
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﷑التمرئوالثاني
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ÊAF
)
=

14√
37.

√
8
≈ 0.81 أي #   »

AF.
#   »

AE = AF × AE × cos
(
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(C1) : (x − 4)2 − 42 +(y +1)2 − 12 +12 = 0 أي (C1) : x2 + y2 − 8x +2y +12 = 0 : دائرة (C1) أن تبيان ¶ II
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فيثاغورت. طريقة استعمال يمكن



: (C2) الدائرة معادلة ايجاد ▲
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2 قطرها نصف ليكن و (C2) الدائرة مركز و [AC] منتصف ω2(2, 2) لتكن : أولى طريقة -

.(C2) : (x − 2)2 +(y − 2)2 = (
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2)2 اذن
x2 + y2 − 4x − 4y +6 = 0 أي (x − xA)(x − xC)+ (y − yA)(y − yC) = 0 نجد #      »
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هو الناظمي شعاعه فإن مماس (T) أن بما : (T) معادلةالمستقيم ¹

.(T) : x + y − 6 = 0 : هي المستقيم معادلة اذا c = −6 أي xB + yB + c = 0 : فإن B ∈ (T) أن بما
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المعادلة نحل 2x2 − 22x +60 = 0 نجد (C2) الدائرة معادلة في (∗) العلاقة نعوض y = −x +6 · · · (∗) لدينا : احداثييهما تعيين ▲
. F(6, 0) اذن y = 0 نجد (∗) في نعوض x = 6 أجل من و E(5, 1) اذن y = 1 نجد (∗) في نعوض x = 5 أجل من
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