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المستهدفة المستهدفةالكفاءات الكفاءات
: هي المحور هذا خلال من المستهدفة الكفاءات

◀◀

أمين بــخدة الأستاذ كتابة:



أمᥖين :بـخدة الأستـاذ 01 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

الإحتمالات التعلمية: الوحدة
التحليل التعلم: ميدان

المركبة الأعداد مجموعة : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

المجموعات حول أولية مفاهيم : القʮلʻـــة الʮʴʯȜʸـات
مركب لعدد الإصطلاحات و رموز بعض على التعرف : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź
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a3 + b3 + 3(ab − 5)(a + b)− 4 = 0 · · · 2 : إذا فقط و إذا (1) للمعادلة حل a + b أن إثبان 1

(a + b)3 = 15(a + b) + 4 يعني x3 = 15x + 4 · · · (1) للمعادلة حل a + b •

a3 + b3 + 3ab2 + 3a2b − 15a − 15b + 4 = 0 يعني a3 + b3 + 3ab2 + 3ba2 = 15a + 15b + 4 يعني
a3 + b3 + 3(ab − 5)(a + b)− 4 = 0 يعني

a3 + b3 = 4 أي a3 + b3 − 4 = 0 تكافئ (2) فإن: ab = 5 أجل من 2
هي125 a3b3 قيمة •

(x − a3)(x − b3) = x2 − 4x + 125 : x حقيقي عدد كل أجل من أنه التأكد 3

(x − a3)(x − b3) = x2 − xb3 − xa3 + a3b3 = x2 − x(a3 + b3)− a3b3 = x2 − 4x + 125 لدينا:
. حقيقية حلول تقبل لا x2 − 4x + 125 = 0 · · · 3 : المعادلة أن التأكد 4

R في حلول تقبل لا (3) المعادلة ومنه ∆ = (−4)2 − (4 × 1 × 125) = −484 < 0 : لدينا
∆ = 484i2 = (22i)2 ،إذن i2 = 1 يحقق و i بـ له نرمز عدد نتخيل 5

x2 =
4 + 22i

2
= 2 + 22i و x1 =

4 − 22i
2

= 2 − 11i : هي الحالة هذه في المعادلة حلول إذن
(2 + i)3 و (2 − i)3 حساب 6

و (2 − i)3 = (2 − i)2(2 − i) = (4 − 1 − 4i)(2 − i) = 2 − 11i
(2 + i)3 = (2 + i)2(2 + i) = (2 + 11i

(1) للمعادلة حل 4 أي (1) للمعادلة حل (2 − i) + (2 + i) ومنه (2 + i)3 + (2 − i)3 = 4 لدينا:
x3 − 5x − 4 = 0 حدود لـكثير جذر 4 ومنه

x3 − 15x − 4 x − 4
x2 + 4x + 1− x3 + 4x2

4x2 − 15x
− 4x2 + 16x

x − 4
− x + 4

0
x = 4 يعني x2 + 4x + 1 = 0 أو x − 4 = 0 تكافئ (1) إذن x3 − 15x − 4 = (x − 4)(x2 + 4x + 1) ومنه

x = −2 +
√

3 أو x = −2 −
√

3 أو
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حقيقيان عددان y و x : حيث z = x + iy : الشكل على يكتب z عدد كل مركبا عددا نسمي
i2 = −1 و

C = {x + iy ; a, b ∈ R} : المركبة الأعداد مجموعة إلى C : بـ نرمز

إلىتــعريفتــعريف أضف

مطويتك

مـثال
مركبة أعداد عن عبارة هي 5i , −3 , 1 − i , 2 + 3i : من كل

: Ųƭ űƓȊ̓ــــƶƨ
Re(z) بـ له ونرمز z المركب للعدد الحقيقي الجزء يسمى x الحقيقي العدد
Im(z) بـ له ونرمز z المركب للعدد التخيلي الجزء يسمى y الحقيقي العدد

حقيقي z العدد إن نقول y = 0 كان إذا
( محض تخيلي أو بحت تخيلي (أو صرف تخيلي z إن نقول x = 0 كان إذا

معدوم التخيلي وجزؤه معدوم الحقيقي جزؤه كان إذا وفقط إذا معدوما z المركب العدد يكون
y = 0 و x = 0 : معناه z = 0 أي

z المركب للعدد الجـبري الشكل تسمى z = x + iy الكتابة

:Ɲŵſ ŴſƓ
Ųȉ

حالة كل في Im(z) و Re(z) عينّ
−3 + 2i ¹ 5 ¸ 7i · 6 + 3i ¶

:Ɲŵſ ŴſƓ
Ųȉ

z = x2 + x + i(x2 + y − 1) حيث مركب عدد z

معدوما z المركب العدد يكون حتى (x; y) الحقيقين العددين عينّ -

xحـل = −1

y = 0
أو

x = 0

y = 1
يعني

x2 + x = 0

x2 + y − 1 = 0
: يعني معدوما z

y = 0 و x = −1 أو y = 1 و x = 0 كان إذا معدوما z يكون إذن
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أمᥖين :بـخدة الأستـاذ 02 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

الإحتمالات التعلمية: الوحدة
التحليل التعلم: ميدان

مركب لعدد الهندسي التمثيل : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

المركبة الأعداد مجموعة حول أولية مفاهيم : القʮلʻـــة الʮʴʯȜʸـات
مركب لعدد الهندسي التمثيل : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع
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p(x; 0) بالنقطة يمثل α الحقيقي العدد عليه و الحقيقية الأعداد مجموعة يمثل الفاواصل محور حامل
مركبا عددا نسميه حقيقي غير العدد هذا و عددا تمثل الفواصل محور حامل إلى تنتمي لا المستوي من أخرى نقطة كل أن نقبل
التخيلية الأعداد محور يسمى و التراتيب محور حامل على تمثل q(0; y) النقطة و i المركب العدد تمثل j(0; 1) النقطة هكذا و
حقيقين عددين y و x حيث z = x + iy أي z بالرمز له نرمز و x + iy المركب العدد تمثل M(x; y) النقطة عامة بصفة

ZA = −1 − i هو A النقطة تمثله الذي المركب العدد • 1
ZB = 3 − 2i هو B النقطة تمثله الذي المركب العدد •
ZC = 5 + 2i هو C النقطة تمثله الذي المركب العدد •

ZD = −2 + 4i هو D النقطة تمثله الذي المركب العدد •
ZE = 3i هو E النقطة تمثله الذي المركب العدد •

ZF = −5 هو F النقطة تمثله الذي المركب العدد •
ZG = 1 + 2i ومنه −→OG(1; 2) ومنه −→OD(−2; 4) ، −→OB(3;−2) : لدينا 2

ZH = −5 + 3i ومنه −→OH(−5; 3) ومنه −→OF(−5; 0) ، −→OE(0; 3) : لدينا 3

ZK = −2 + 3i ومنه −→GK(−3; 1) ومنه (−→AB +
−→
CD)(−3; 1) ومنه −→CD(−7; 2) ، −→AB(4;−1) : لدينا 4

T(0;−7) ، S(−1
2

,−3) ، R(2;−1) T و R ، S النقط تمثيل 5
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تـــعــريــف

x

y

−→u

−→v

O x

y M

(O;−→u ,−→v ) ومتجانس متعامد معلم إلى المنسوب المستوي -
z = x + iy : المركب العدد نرفق المستوي من M(x; y) نقطة لكل

كذلك يسمى −→OM والشعاع ،z المركب العدد صورة هي M النقطة أن نقول
z المركب العدد صورة

z = x + iy وحيد مركب عدد صورة هي M نقطة كل
−→
OM والشعاع M النقطة لاحقة z أن ونقول

المركب المستوي يسمى والمستوي التخيلي المحور يسمى التراتيب ومحور الحقيقي المحور يسمى الفواصل محور

:Ɲŵſ ŴſƓ Ųȉ
zA = 1 − 3i هي A(1,−3) النقطة لاحقة

B(2;
√

3) : هي zB = 2 + i
√

3 اللاحقة ذات B النقطة إحداثيا
zC = 2 + 3i العدد صورة −→u (2; 3) الشعاع

حقيقيان عددان y و x ،(O;−→u ,−→v ) ومتجانس متعامد معلم إلى منسوب المركب المستوي :Ɲŵſ ŴſƓ Ųȉ
z = x2 + y(1 + i)− i : حيث المستوي من M(x; y) النقط مجموعة (S) لتكن

صرف تخيلي z ، حقيقيا z الأتيتين: الحالتين (S)في المجموعة أنشئ ثم عين

حـل
z = x2 + y2 + y(1 + i)− i = x2 + y2 + y + yi − i = x2 + y2 + y + (y − 1)i

y − 1 هو z لـ التخيلي الجزء و (x2 + y2 + y) هو z لـ الحقيقي الجزء
y = 1 أي y − 1 = 0 يعني معدوم التخيلي الجزء يعني حقيقي z ⋆

y = 1 معادلته الذي المستقيم هي M النقط مجموعة إذن
يعني x2 + (y +

1
2
)2 − 1

4
= 0 يعني x2 + y2 + y = 0 يعني معدوم الحقيقي الجزء يعني صرف تخيلي z ⋆

1
2
قطرها نصف و A

(
;−1

2

)
مركزها التي الدائرة هي S النقط مجموعة إذن ، x2 + (y +

1
2
)2 =

(
1
4

)2

−5 −4 −3 −2 −1 1 2 3 4 5

−2

−1

1

2

A x

y

114 صفحة 4 و 2 تمرين حل
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أمᥖين :بـخدة الأستـاذ 03 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

الإحتمالات التعلمية: الوحدة
التحليل التعلم: ميدان

المركبة الأعداد على العمليات : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

المركبة الأعداد مجموعة حول أولية مفاهيم : القʮلʻـــة الʮʴʯȜʸـات
المركبة الأعداد على الحسابية العمليات : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź

مركبين عددين جداء و مجموع ¬
تـــعــريــف

حقيقية أعداد y′ و x′, y, x مع z′ = x′ + iy′ , z = x + iy حيث مركبّان عددان z′ و z -
z + z′ = x + x′ + i(y + y′) المركّب العدد هو z′ و z العددين مجموع

z.z′ = xx′ − yy′ + i(xy′ + x′y) المركّب العدد هو z′ و z العددين جداء

i2 = −1 أن الإعتبار الأخذبعين مع C في صحيحة تبقى R في المعروفة الحساب قواعد : Ųƭ űƓȊ̓ــــƶƨ

مــثال
مــثال

(1 − i) + (3 + 2i) = 1 + 3 + i(−1 + 2) = 4 = i

(1 + 3i)(2 + i) = 2 = i + 6i − 3 = −1 + 7i

:Ɲŵſ ŴſƓ Ųȉ
: الجـبري الشكل على التالية الأعداد أكتب ⋆

z3 =
3 + 2i
4 − i

• z2 = (−2 + i)(−3 + 5i) • z1 = (1 + i)4 •

i8 و i7 ، i6 ، i5 ، i4 ، i3 من كل الجـبري الشكل على .أكتب معدوم غير طبيعي عدد n ⋆
الجـبري الشكل على in كتابة n لقيم تبعا ناقش ⋆

: مركبين عددين لمجموع الهندسي التفسير ­
تـــعــريــف

x

y

−→u
−→v

O

S

M

M′

(O;−→u ,−→v ) ومتجانس متعامد معلم إلى المنسوب المستوي -
M′ النقطة لاحقة z′ و M النقطة لاحقة z

−→
OS =

−→
OM +

−−→
OM′ حيث: S النقطة لاحقة هو z+ z′ المجموع

−−→
OM′ و −→OM الشعاعين محصلة هو −→

OS : أي
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: Ųƭ űƓȊ̓ــــƶƨ
−→
AB +

−→
CD الشعاع لاحقة هو z + z′ فإن −→CD الشعاع لاحقة z′ وكان −→AB الشعاع لاحقة z كان إذا

k
−→
CD الشعاع لاحقة هو kz فإن حقيقيا عدد k وكان −→AB الشعاع لاحقة z كان إذا

اللاحقة نفس لهما كان إذا يان متساو شعاعن يكون

:Ɲŵſ ŴſƓ Ųȉ
C(0, 2) و B(−

√
3,−1) ، A(

√
3, 1) النقط لواحق الترتيب على هي zC و zB ، zA

الأضلاع متوازي ABCD الرباعي يكون حتي D النقطة لاحقة عين ⋆

: مرجح لاحقة - شعاع لاحقة ®
خـــاصية

(O;−→u ,−→v ) ومتجانس متعامد معلم إلى المنسوب المركب المستوي -
الترتيب. على zB و zA لاحقتاهما المستوي من نقطتان B و A

zB − zA هي −→
AB الشعاع لاحقة -

{(A, α); (B, β)} الجملة مرجح G كان إذا ، α + β ̸= 0 : حيث حقيقيان عددان β و α -
zG =

αzA + βzB

α + β
: هي G النقطة لاحقة فإن

:Ɲŵſ ŴſƓ Ųȉ(
O;

−→
i ,

−→
j
) المتجانس و المتعامد المعلم إلى منسوب المركب المستوي

: الترتيب على لواحقتها المستوي من نقط ثلاث C و B ، A
ZC = 2 + 2i و ZB = 3 + i ، ZA = 1 − 3i
−→
AB +

−→
AC و −→AC ، −→AB : الأشعة لواحق عينّ ⋆

حقيقيان عددان y و x ، (O;−→u ,−→v ) ومتجانس متعامد معلم إلى منسوب المركب المستوي :Ɲŵſ ŴſƓ Ųȉ
zC = 2 − 3i و zB = −3i ، zA = 3i : الترتيب على لواحقها المستوي من نقط ثلاث C و B ، A

{(A, 1); (B, 2); (C,−2)} الجملة مرجح G النقطة لاحقة عين ¶

145 صفحة 26 و 20 تمرين حل
150 صفحة 89 و 88 تمرين حل
الدرس سير حول ملاحظات
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نظيرة M′ ولتكن z لاحقتها المسوي من نقطة M(x, y) و (O;−→u ,−→v ) ومتجانس متعامد معلم إلى المنسوب المستوي

z بـ للاحقتها نرمز الفواصل، محور إلى بالنسبة M

zz و z − z ، z + z أحسب ثم ، الجـبري الشكل على z و z أكتب -
الجـبري الشكل على اكتبه ثم حقيقيا عددا 1 + i

2 + 3i
المركب العدد مقام اجعل -

مركب عدد مرافق ¬

−→u
−→v

O

y

−y

x

M(z)

M′(z)

تـــعــريــف

(x, y ∈ R) z = x + iy : حيث مركب عدد z -
z العدد مرافق يسمى z : بـ نرمزله والذي x − iy : المركب العدد

التخيلي. الجزء إشارة نغير z مركب عدد مرافق على للحصول : Ųƭ űƓȊ̓ــــƶƨ

مـثال
مـثال

−3 = −3 ، −i = i ، 1 − i
√

2 = 1 + i
√

2 ، 2 + 3i = 2 − 3i

: مركب عدد مقلوب ­

مــبرهنة
1
z

: بـ له يرمز C في مقلوب له z معدوم غير مركب عدد كل

: مركب عدد مرافق خواص ®

خــواص

zz =
(

Re(z)
)2

+
(

Im(z)
)2

¹ z − z = 2iIm(z) ¸ z + z = 2Re(z) · z = z ¶
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: العمليات و المرافق ¯

خــواص

z′ ومرافقه مركب عدد z′ ،z مرافقه و مركب عدد z
n ∈ N∗ مع zn = zn Q ، zz′ = z.z′Q ، z + z′ = z + z′ Q

z′ ̸= 0 مع ( z
z′
)
=

z
z′

Q ، z ̸= 0 مع (1
z

)
=

1
z

Q

■

الʮــــʙهـــان
حقيقية أعداد y2 و y1 ، x2 ، x1 حيث z2 = x2 + y2 و z1 = x1 + iy1 نضع

z1 + z2 = x1 + x2 + (y1 + y2)i لدينا: ¶
z1 + z2 = x1 + x2 − (y1 + y2)i = x1 + x2 − y1i − y2i = x1 − y1i + x2 − y2i = z1 + z2 ومنه

z1 × z2 = (x1 − y1i)(x2 − y2i) = (x1x2 − y1y2)− (x1y2 + x2y1)i ·
z1 × z2 = (x1x2 − y1y2)− (x1y2 + x2y1)i ومنه z1 × z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i

z1 × z2 = z1 × z2 ومنه
بالتراجع البرهان نستعمل ¸

zn = (z)n : p(n) الخاصية لتكن
محققة z = z لدينا: n = 1 أجل من

p(n + 1) صحة نبرهن و zn = (z)n نفرض: أي كيفي طبيعي عدد n أجل من الخاصية صحة نفرض
zn+1 = (z)n+1 أي

. صحيحة p(n + 1) ومنه zn+1 = (z)n × z1 = zn+1 ومنه zn+1 = zn × z = zn × z : لدينا
zn = (z)n : n طبيعي عدد كل أجل من )إذن

z2

z1

)
=

(
z2

z1

)
ومنه z =

(
z2

z1

)
ومنه z2 = z1 × z ومنه z2 = z × z1 ومنه z =

z2

z1
نضع ¹(

1
z

)
=

1
z
نتيجة º

:Ɲŵſ ŴſƓ
Ųȉ

: الترتيب على b و a لـ مرافق b و a حيث A = a × b + b × a : نضع مركبان عددان b و a -

A أحسب ⋆
L =

3 − 4i
3 − i

نضع: ؟ تستنتج ماذا ⋆
الجـبري شكله على L أكتب -

:Ɲŵſ ŴſƓ
Ųȉ

P(z) = z3 + z2 − 2 : بـ المعرف z المركب للمتغير P الحدود كثير ليكن
P(z) = P(z) : z مركب عدد كل أجل من أنه أثبت ¶

P(−1 − i) و P(1) أحسب ·
P(z) جذور عين ¸

الدرس سير حول ملاحظات
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−→u

−→v

O

y

x

M المستوي من نقطة M، (O;−→u ,−→v ومتجانس( متعامد معلم إلى المنسوب المستوي
.z المركب العدد صورة

y و x بدلالة OM المسـافة أحسب -

مركب عدد طويلة

تـــعــريــف

|z|

−→u

−→v

O

y

x

M
(x, y ∈ R) z = x + iy : حيث مركب عدد z -
الذي الموجب الحقيقي العدد z المركب العدد يلة طو نسمي

|z| =
√

x2 + y2 : حيث |z| : بـ له نرمز

مركب عدد لطويلة الهندسي )التفسير
O;

−→
i ,

−→
j
) متحانس و متعامد معلم إلى منسوب المستوي

حقيقيان عددان y و x حيث z = x + iy حيث مركب عدد z

|z| = ∥−→OM∥ ومنه ∥−→OM∥ =
√

x2 + y2 ومنه −→OM(x; y) ومنه M(x; y) .لدينا z صورة M
O و M بين المسافة هي z يلة طو

مــثال
مــثال

|1 − i
√

3| =
√

1 + 3 = 2 ، |2 + 3i| =
√

4 + 9 =
√

13

: Ųƭ űƓȊ̓ــــƶƨ
. له المطلقة قيمة هي z يلة طو فإن حقيقيا z كان إذا ⋆

|z| = 0 : فإن z = 0 كان إذا ⋆
|z|2 = z × z ومنه z × z = x2 + y2 : لدينا مماسبق و |z|2 = x2 + y2 : لدينا ⋆

AB = |zB − zA| : الترتيب على zB و zA لاحقتاهما نقطتنان B و A ⋆
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خــواص

z′ و z مركبين عددين كل أجل من
|z.z′| = |z|.|z′| v ، | − z| = |z|v ، |z| = |z| v

|z + z′| ⪯ |z|+ |z′| v ، z′ ̸= 0 مع ∣∣∣ z
z′

∣∣∣ = |z|
|z′|v ، |zn| = |z|n v

:Ɲŵſ ŴſƓ
Ųȉ

: التالية المركبة الأعداد يلة طو عينّ
z4 = (3− 2i)(3+ 2i) ¹ z3 =

√
2 − 4i
−3i

¸ z2 = (2− 3i)4 · z1 = (3− i)(−5+ 2i) ¶

: النقط مجموعة لتعيين مركب عدد طويلة توظيف

:Ɲŵſ ŴſƓ
Ųȉ

. الترتيب على z3 = 1 + 2i و z2 = −i ، z1 = 2 اللواحق ذات C و B ، A النقط نعتبر
ABC المثلث طبيعة إستنتج ثم ، |z3 − z2| و |z3 − z1| ، |z2 − z1| أحسب ¶

: z اللاحقة ذات M النقط مجموعة التاليتين الحالتين من حالة كل في عينّ ·

|z − z2| = |z − z3| ب) |z − z1| = |z2| أ)
حـل

الطويلات حساب ¶

|z2 − z1| =
√

5 ومنه |z2 − z1| = | − i − 2| =
√

1 + 4
|z3 − z1| =

√
5 ومنه |z3 − z1| = | − i + 2i| =

√
1 + 4

|z3 − z2| =
√

10 ومنه |z3 − z2| = |1 + 3i| =
√

1 + 9

ABC المثلث طبيعة إستنتاج
|z2 − z1|2 + |z3 − z1|2 = |z3 − z2|2 و AB = AC =

√
5 فإن |z2 − z1| = |z3 − z1| =

√
5 : أن بما

الساقين متساوي و A في قائم ABC المثلث إذن . AB2 + AC2 = BC2 : فإن
M النقط مجموعة تعيين ·

1 قطرها نصف و A مركزها الدائرة هي M النقط مجموعة ومنه AM = 1 : أي |z − z1| = |z2| لدينا ⋆
[BC] المستقيمة لبقطعة محور هي M النقط مجموعة ومنه BM = CM أي |z − z2| = |z − z3| : لدينا ⋆

النقط مجموعة تمثيل
y

x

□

A

B

C

منزلي تمرين
(O;

−→
i ,

−→
j ) المتجانس المتعامد المعلم إلى المنسوب المركب المستوي

| − 3z| =
√

2 ♣ |z|2 − 2Re(z) = 0 : المساواة تحقق التي z الاحقة ذات M النقط مجموعة عين -
الدرس سير حول ملاحظات

.................................................................................................................................................... -
....................................................................................................................................................
....................................................................................................................................................

التقويم

2



أمᥖين :بـخدة الأستـاذ 06 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المركبة الأعداد التعلمية: الوحدة
الهندسة التعلم: ميدان

مركب عدد عمدة : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

الأعداد مجموعات حول أولية مفاهيم : القʮلʻـــة الʮʴʯȜʸـات
مركب عدد عمدة حساب : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź

مقترح مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط نشاط 11111111111111111
zM =

√
3 + i لاحقتها نقطة M O;−→u)و ,−→v ) ومتجانس متعامد معلم إلى منسوب المركب المستوي

−→v

−→u
√

3

1
M

O
θ

sin(−→u ;
−→
OM) و cos(−→u ;

−→
OM) استنتج ثم |zM | أحسب

(−→u ;
−→
OM) الموجهة ية للزاو بالراديان قيسا استنتج

تـــعــريــف

−→v

−→u x

y
M

O
θ

حقيقين عددين y و x حيث z = x + iy : حيث مركب عدد z -
نقطة M ولتكن (O;−→u ,−→v ) ومتجانس متعامد معلم إلى منسوب المركب المستوي في

z لاحقتها
(−→u ;

−→
OM) الموجهة ية للزاو بالراديان قيس كل z المركب العدد عمدة نسمي

arg(z) : بالرمز لها ونرمز

: Ųƭ űƓȊ̓ــــƶƨ
له عمدة θ+ 2π فإن z لـ عمدة θ كانت إذا أي ، العمد من منته غير عدد له غيرمعدوم مركب عدد كل

معروفة غير (−→u ;
−→
OO) ية والزاو المعلم مبدأ هي صورته لأن عمدة له ليس 0 العدد

(
−→
OA;

−→
OB) = (−→u ;

−→
OB)− (−→u ;

−→
OA) الترتيب. على zB و zA لاحقتاهما نقطتان B و A

(
−→
OA;

−→
OB) = arg(zB)− arg(zA) أي
arg(zB − zA) = (−→u ;

−→
AB)

التخيلي الجزء و الحقيقي الجزء بدلالة معدوم غير مركب عدد عمدة حساب
z صورة M لتكن و z لـ عمدة θ لتكن و حقيقيان عددان y و x. z = x + iy حيث معدوم غير مركب عدد z ليكن

r = |z| أي r =
√

x2 + y2 : حيث M لـ القطبية إحداثيات (r; θ) و M لـ الديكارتية إحداثيات (x; y) : cosلدينا θ = x
|z|

sin θ = y
|z|

ومنه
cos θ = x

r

sin θ = y
r

ومنه
x = r cos θ

y = r sin θ
: لدينا و

مــثال
مــثال

z2 = −1 − i
√

3،z1 = 2 − 2i حيث z2 و z1 المركبين العددين عمدة و يلة طو عينّ
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᧲᧲ع᧲᧲᧲
᧲᧲᧲᧲᧲᧲᧲
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حـل
z1 لـ عمدة θ لتكن و |z1| =

√
(2)2 + (−2)2 =

√
8 = 2

√
2 ¶

θ = −π

4
ومنه


cos θ =

2
2
√

2
=

1√
2

sin θ =
−2

2
√

2
= − 1√

2

: لدينا

z1 لـ عمدة θ′ لتكن و |z2| =
√
(−1)2 + (−

√
3)2 = 2 ·

θ =
π

3
+ π =

4π

3
ومنه


cos θ′ = −1

2

sin θ′ = −
√

3
2

: لدينا

:Ɲŵſ ŴſƓ
Ųȉ

: التالية المركبة الأعداد عمدة عينّ -
zB =

√
3 − i zB = 1 + i zA = 1 +

√
3i ¶

(u;
−→
AB) و (OA;

−→
OB) الموجهتين الزاويتين من لكل قيس إستنتج -

الدرس سير حول ملاحظات
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أمᥖين :بـخدة الأستـاذ 07 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المركبة الأعداد التعلمية: الوحدة
الهندسة التعلم: ميدان

معدوم غير مركب لعدد المثلي الشكل : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

معودم غير مركب عدد يلة طو و عمدة حساب : القʮلʻـــة الʮʴʯȜʸـات
العكس و المثلثي إلى الجـبري الشكل من الإنتقال : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź

مقترح مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط مقترحنشاط نشاط 11111111111111111
(O;−→u ,−→v ) ومتجانس متعامد معلم إلى منسوب المركب المستوي

له عمدة θ لتكن و حقيقيان عددان y و x حيث z = x + iy معدوم: غير مركب عدد z ليكن و
θ و |z| بدلالة y و x أكتب 1

|z|(cosθ+ i sin θ) الشكل على يكتب z أن إستنتج 2

تـــعــريــف

−→v

−→u

rc
os

θ

r sin θ
M

O
θ

معدوم غير مركب عدد z -
z المركب للعدد المثلثي بالشكل r(cosθ+ i sin θ) الكتابة نسمي

arg(z) = θ و r = |z| : حيث

: Ųƭ űƓȊ̓ــــƶƨ
z′ = r′

(
cosθ′ + isinθ′

) zو = r
(
cosθ+ isinθ

) حيث مركبين عددين z′ و z كان إذا
k ∈ Z مع θ = θ′ + 2kπ و r = r′ : كان إذا إذاوفقط يين متساو z′ و z يكون

arg(z) = θ و |z| = L فإن L > 0 حيث z = L(cos θ+ i sin θ) كان إذا

تطبيقي مــثال
مــثال تطبيقي

z3 = 4¸ z2 =
√

2 + i
√

6· z1 = 1 + i ¶ : المركبة للأعداد المثلثي الشكل أكتب

:Ɲŵſ ŴſƓ
Ųȉ

z = (x2 − 4)
(

cos
π

4
+ i sin

π

4

) : حيث مركب عدد z و حقيقي عدد x

z لـ العمدة و يلة الطو x قيم حسب عينّ -
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:Ɲŵſ ŴſƓ
Ųȉ

: حالة كل في z المركب للعدد المثلثي الشكل على أكتب
z =

√
5
(

sin
π

6
+ i cos

π

6

)
¸ z = −3

(
cos

π

3
+ i sin

π

3

)
· z = 4

(
cos

π

4
− i sin

π

4

)
¶

z = − sin
π

6
+ i sin

π

6
¹
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أمᥖين :بـخدة الأستـاذ 08 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المركبة الأعداد التعلمية: الوحدة
الهندسة التعلم: ميدان

العمدة خواص : الحصة موضوع

أميـن بـخدة : الأستاذ
يا 3ر : المستوى

ساعة 1� : المدة

معودم غير مركب عدد يلة طو و عمدة حساب : القʮلʻـــة الʮʴʯȜʸـات
مسائل لحل العمدة خواص توظيف : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź
النفسة التهيئة

مركب لعدد المثلثي بالشكل التذكير
: معدوم غير مركب عدد عمدة خواص

معدومين غير مركبان عددان z′ و z
arg(z.z′) = arg(z) + arg(z′) ¶

arg
( z

z′
)
= arg(z)− arg(z′) ·

n ∈ N∗ : مع arg(zn) = narg(z) ¸

z المركب العدد مرافق هو z : مع arg(z) = −arg(z) ¹

arg
(1

z

)
= −arg(z) º

arg(−z) = arg(z) + π »

إلىخواصخواص أضف

مطويتك

■

الʮــــʙهـــان
موجبان حقيقيان عددان r2 ، r1 : حيث z2 = r2(cos θ2 + i sin θ2) z1و = r1(cos θ1 + i sin θ1) : نضع ¶

حقيقية أعداد θ2 و θ1 و
z1 × z2 = r1 × r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1 × r2 [(cos θ1 × cos θ2 − sin θ1 × sin θ2) + i(cos θ1 × sin θ2 + sin θ1 × cos θ2)]

= r1 × r2 [cos(θ1 + θ2) + i sin(θ1 + θ2)]

arg(z1 × z2) = arg(z1) + arg(z2) و |z1 × z2| = r1 × r2 إذن r1 × r2 > 0 : لدينا
arg(z) = arg(z1)− arg(z2) ومنه arg(z1) = arg(z)+ arg(z2) ومنه z1 = z × z2 ومنه z1

z2
= z نضع ·

arg
(

z1

z2

)
= arg(z1)− arg(z2) إذن

معدوم غير طبيعي عدد n أجل من p(n) : arg(zn) = n arg(z) الخاصية لتكن ¸

صحيحة p(1) ومنه arg(z1) = 1arg(z) : لدينا n = 1 من
p(n + 1) صحة نبرهن و كيفي طبيعي عدد n أجل من p(n) صحة نفرض

arg(zn+1) = (n + 1) arg(z) أن: نبرهن أي
arg(zn+1) = arg(zn × z) = arg(zn) + arg(z) = n arg(z) + arg(z) = (n + 1) arg(z)

إستنتاج » º ¹
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(
O;

−→
i ,

−→
j
) المتجانس المتعامد المعام إلى المنسوب المركب المستوي

. الترتيب على zC و zB ،zA لواحقها نقط ثلاث C و B ، A

arg
(

zB − zA

zC − zA

)
=
(−→

OI ,
−→
AB
)
−
(−→

OI ,
−→
AC
)
=
(−→

AB,
−→
AC
)

إلىنتيـجةنتيـجة أضف

مطويتك

:Ɲŵſ ŴſƓ Ųȉ
z2 = 1 − i

√
3 و z1 = 1 + i : حيث مركبين عددين z2 و z1

المثلثي. الشكل على z2 و z1 أكتب ¶

. المثلثي الشكل ثم الجـبري الشكل على z1

z2
أكتب ·

sin
(

7π

12

)
و cos

(
7π

12

)
من لكل المضبوطة القيمة إستنتج ¸

:Ɲŵſ ŴſƓ Ųȉ
z = 1 − i : حيث مركب عدد z

. حقيقيا عددا zn أجلها من يكون التي n الطبيعي العدد قيم عينّ ¶

. صرفا عدداتخيليا zn أجلها من يكون التي n الطبيعي العدد قيم عينّ ·

k ∈ Z : مع arg(zn) = kπ معناه حقيقي zn -

k ∈ Z : مع arg(zn) =
π

2
+ kπ : معناه صرف تخيلي zn -

إلىطريقةطريقة أضف

مطويتك

النقط مجموعة لتعيين العمدة خواص توظيف

:Ɲŵſ ŴſƓ Ųȉ
:z المركب العدد اللاحقة ذات M النقط مجموعة عينّ

arg(z − 1 − i) =
π

4
+ kπ; k ∈ Z · arg(z − 2i) =

π

3
+ 2kπ; k ∈ Z ¶

arg(z) = arg(z) ¹ arg
(

z − i
z + 1 − i

)
=

π

2
+ kπ ¸

التطبيق حـل
zA = 2i لاحقتها المستوي من نقطة A لتكن ¶(−→u ;

−→
AM

)
=

π

3
+ 2kπ : حيث A النقطة عدا ما [AM) مستقيم نصف هي M النقط مجموعة ومنه

خاصة حالات
O النقطة ماعدا [Ox) مستقيم نصف هي M : arg(z) = 2kπ ⋆

O النقطة ماعدا [Ox′) مستقيم نصف هي M : arg(z) = π + 2kπ ⋆

O النقطة ماعدا [Oy) مستقيم نصف هي M : arg(z) =
π

2
+ 2kπ ⋆

O النقطة ماعدا [Oy′) مستقيم نصف هي M : arg(z) = −π

2
+ 2kπ ⋆

zB = 1 + i لاحقتها المستوي من نقطة B لتكن ·(−→u ,
−→
BM

)
=

π

4
: حيث B النقطة ماعدا [BM) المستقيم هي M النقط مجموعة ومنه

التقويم

2



خاصة حالة
O النقطة بإستثناء الأول النصف هي M : arg(z) =

π

4
+ kπ

zB = 1 + i و zA = i لاحقتاهما المستوي من نقطتان B و A لتكن ¸
B و A النقطتين ماعدا [AB] قطرها دائرة هي M النقط مجموعة ومنه

خاصة حالة

B و A النقطتين عدا ما [AB] قطرها دائرة نصف هي M : arg
(

z − i
z + 1 − i

)
=

π

2
+ 2kπ

أي arg(z) = kπ ومنه 2 arg(z) = 0 + 2kpi ومنه arg(z) = − arg(z) أي arg(z) = arg(z) ¹(−→u ,
−→
OM

)
= kπ

O المبدأ ماعدا (xx′) الفواصل محور حامل هي M النقط مجموعة ومنه

:Ɲŵſ ŴſƓ Ųȉ
: المثلي شكلها على التالية المركبة الأعداد أكتب

z4 = (z3)
2014 ، z3 =

1 + i
1 − i

، z2 = (
√

3 − i)

(
1
2
+

√
3

2
i

)
، z1 = 1 + i

√
3

154 صفحة 123 و 121 تمرين و 147 صفحة 46 منزلي تمرين
الدرس سير حول ملاحظات
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أمᥖين :بـخدة الأستـاذ 09 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المركبة الأعداد التعلمية: الوحدة
الهندسة التعلم: ميدان

مركب لعدد الأسي الشكل : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

معودم غير مركب عدد يلة طو و عمدة حساب : القʮلʻـــة الʮʴʯȜʸـات
العكس و الأسي إلى الجـبري الشكل من الإنتقال : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź

نشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاط 11111111111111111(
O;

−→
i ,

−→
j
) متجانس متعامد معلم إلى منسوب المركب المستوي

z0 = cos θ+ i sin θ : .إذن له عمدة θ لتكن و 1 يلته طو مركب عدد z0

f (θ) = cos θ+ i sin θ أي z0 المركب العدد θ حقيقي عدد بكل ترفق التي f الدالة لتكن
. حقيقيان عددان θ′ و θ : حيث f (θ)× f (θ′) و f (θ+ θ′) أحسب -

cos(θ+ θ′) = cos(θ). cos(θ′)− sin(θ). sin(θ′) : الجمع دستوري إستخدم إرشاد
sin(θ+ θ′) = cos(θ). sin(θ′) + sin(θ). cos(θ′) و

تستنتج؟ ماذا -

ترميزأولر. يسمى الترميز هذا eiθ = cos θ+ i sin θ نضع:
له عمدة θ و 1 يلته طو مركب عدد eiθ : حيث

أولر) أولر)تعريف(ترميز إلىتعريف(ترميز أضف

مطويتك

معدوم غير مركب لعدد الأسي الشكل

z = reiθ يكتب . له عمدة θ و r يلته طو الذي المعدوم غير z المركب العدد
z المركب للعدد الأسي الشكل تسمى الكابة هذه

إلىتعريفتعريف أضف

مطويتك

مثال
مثال

z = 1 + i =
√

2
(

cos(
π

4
) + i sin(

π

4
)
)

:Ɲŵſ ŴſƓ
Ųȉ

: التالية الحالات من حالة كل في الأسي الشكل على z أكتب
z = −ei π

3 º z = 2
(

cos(
π

4
)− i sin(

π

4

)
¹ z = −2 + 2i ¸ z = 5 · z = −8i ¶

: حالة كل في z المركب العدد الجـبري الشكل على أكتب :Ɲŵſ ŴſƓ
Ųȉ

z = 3e−i π
2 ¸ z = 6ei 2π

3 · z = 2ei π
3 ¶
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. حقيقيان عددان θ′ و θ

ei(θ)
= e

−i(θ)
� ، e

i(θ)

ei(θ′) = e
i(θ−θ′)

� ، e
i(θ+θ′)

= e
i(θ)

.e
i(θ′)
�

إلىخــواصخــواص أضف

مطويتك

مـثال
مـثال

z2 = 2ei π
3 و z1 = 4ei π

2 : حيث مركبين عددين z2 و z1

z1

z2
=

4ei π
2

2ei π
3
= 2ei( π

2 −
π
3 ) = 2ei π

6 : لدينا

n ∈ N∗ عدد كل أجل من له. عمدة θ و 1 يلته طو مركب عدد z -(
cosθ+ i sinθ

)n
= cos nθ+ i sin nθ أي (e

iθ)n
= e

inθ لدينا

موافر) موافر)خاصية(دستور إلىخاصية(دستور أضف

مطويتك

مــثال
مــثال

z = (1 + i)6 : المركب للعدد الأسي الشكل أكتب موافر دستور باستعمال

: Ųƭ űƓȊ̓ــــƶƨ
k ∈ Z مع nθ = kπ كان إذا فقط و إذا حقيقي zn المركب العدد يكون ⋆

k ∈ Z مع nθ = π + 2kπ كان إذا فقط و إذا سالب حقيقي zn المركب العدد يكون ⋆
k ∈ Z مع nθ = 2kπ كان إذا فقط و إذا موجب حقيقي zn المركب العدد يكون ⋆

k ∈ Z مع nθ =
π

2
+ kπ كان إذا فقط و إذا صرف تخيلي zn المركب العدد يكون ⋆

: نقط مجموعة لتعيين الأسي الشكل توظيف

(O,−→u ;−→v ) ومتجانس متعامد معلم إلى المنسوب المركب المستوي في
z0 لاحقتها نقطة M0 حقيقي، عدد θ و تماما موجب حقيقي عدد r

: هي z = z0 + re
iθ : حيث z اللاحقة Mذات النقط مجموعة -

متغير θ و ثابت r أجل من r قطرها ونصف M0 مركزها دائرة ¬

ثابت. θ و متغير r أجل من (−→u ;
−−→
M0M) = θ : حيث M0 النقطة ماعدا [M0M) مستقيم نصف ­

:Ɲŵſ ŴſƓ
Ųȉ

: حيث z اللاحقة ذات M النقط مجموعة عين
z = 1 + i + 2eiθ ; θ ∈]0 : π] · z = 1 + i + 2eiθ , θ ∈ R ¶

z = 2 − 2i + rei π
3 , r ∈ R∗

+ ¸
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أمᥖين :بـخدة الأستـاذ 10 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المركبة الأعداد التعلمية: الوحدة
الهندسة التعلم: ميدان

مركب عدد يلة وطو عمدة خواص توظيف : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

معودم غير مركب عدد يلة طو و عمدة حساب : القʮلʻـــة الʮʴʯȜʸـات
الهندسية مسائل لحل مركب عدد يلة وطو عمدة خواص توظيف : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź

النفسية التهيئة
الماضية السنة بالمكسبات التذكير

الهندسة في مسائل لحل العمدة و حواصالطويلة توظيف

¶ خاصية

x

y

−→
i

−→
j

−→
V

−→
U

o
θ

θ′

θ′ − θ

(O,−→u ;−→v ) ومتجانس متعامد معلم إلى المنسوب المركب المستوي في
لاحقتاهما −−→OM′ و −→

OM الشعاعان
: حيث الترتيب. على z′ و z

z′ = r′(cosθ′ + i sinθ′) و z = r(cosθ+ i sinθ)

(−→u ;
−−→
OM′) = arg(z′) = θ′ و (−→u ;

−→
OM) = arg(z) = θ

(
−→
OM;

−−→
OM′) = (

−→
OM;−→u ) + (−→u ;

−−→
OM′) = (−→u ;

−−→
OM′)− (−→u ;

−→
OM)

(
−→
OM;

−−→
OM′) = arg(z′)− arg(z) = θ′ − θ : إذن

· خاصية

لواحقها نقط D و C ، B ، A لتكن (O,
−→

i ;
−→

j ) ومتجانس متعامد معلم إلى المنسوب المركب المستوي في
الترتيب على zD و zC ، zB ، zA∣∣∣∣∣ zB − zA

zD − zC

∣∣∣∣∣ = AB
CD

و arg

(
zB − zA

zD − zC

)
= (

−→
CD;

−→
AB) : لدينا

■

∣∣∣∣∣الʮــــʙهـــان zB − zA

zD − zC

∣∣∣∣∣ =
∣∣zB − zA

∣∣∣∣zD − zC
∣∣ = AB

CD

arg

(
zB − zA

zD − zC

)
= arg(zB − zA)− arg(zD − zC) = (

−→
OI ;

−→
AB)− (

−→
OI ;

−→
CD)

arg

(
zB − zA

zD − zC

)
= (

−→
CD;

−→
AB) إذن:
نتيجة

حقيقيا zB − zA
zD − zC

: المركب العدد إذاكان استقامية في C و B ، A النقط �تكون
صرفا تخيليا zB − zA

zD − zC
المركب العدد كان إذا متعامدين (AC) و (AB) المستقيمان �يكون
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:Ɲŵſ ŴſƓ Ųȉ
(O,

−→
i ;

−→
j ) ومتجانس متعامد معلم إلى المنسوب المركب المستوي في

zD =
3
2
+ i

√
3

2
و zC = −3+ 2i

√
3 ، zB = 3+ 2i

√
3 ، zA = −i

√
3 لواحقها نقط DوC،B،A لتكن

الترتيب على
zB − zA

zC − zA
: المركب العدد الأسي ثم الجـبري الشكل على أكتب ¶

Z =
zB − zA

zC − zD
: حيث Z المركب العدد وعمدة يلة لطو هندسيا تفسيرا أعط ·

ABC المثلث طبيعة ماهي ¸

إستقامية في Dو B،A النقط أن بين ¹

حـل
¶

zB − zA

zC − zA
= ei(− π

3 ) وعليه zB − zA

zC − zA
=

1
2
− i

√
3

2
: لدينا

·∣∣∣∣ zB − zA

zC − zA

∣∣∣∣ = |zB − zA|
|zC − zA|

=
AB
AC

•

arg
(

zB − zA

zC − zA

)
= (

−→
AC;

−→
AB •

¸
. الأضلاع متقايس ABC المثلث إذن (−→AC;

−→
AB
)
= −π

3
و AB = AC أي AB

AC
= 1 لدينا . ABC المثلث طبيعة

إستقامية في D و B ، A النقط أن تبيان ¹

z−→
AB

= 2z−→
AD

أي zB − zA = 2(zD − zA) أي zB − zA

zD − zA
= 2

إستقامية في D و B ، A النقط إذن
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أمᥖين :بـخدة الأستـاذ 11 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المركبة الأعداد التعلمية: الوحدة
الهندسة التعلم: ميدان

مركب لعدد بيعيان التر الجذران : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

معودم غير مركب عدد يلة طو و عمدة حساب : القʮلʻـــة الʮʴʯȜʸـات
الدرجة من معادلات حل : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź

نشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاطنشاط 11111111111111111
ω = α + iβ و z = 3 + i4 : حيث مركبان عددان ωو z ليكن

ω2 = z بحيث β و α أوجد -
متناظرين بيعين تر جذرين يقبل z أن إستنتج -

مركب لعدد التربيعيان الجذران

تـــعــريــف

معدوم غير مركب عدد z -
z = ω2 حيث ω المركب العدد هو z المركب للعدد التربيعي الجذر

مــثال
مــثال

(3i)2 = −9 و (−3i)2 = −9 •
−3i 3iو : هما −9 للعدد بيعيان التر الجذران أي

−2 + i 2و + i : هما 3 − 4i للعدد بيعيان التر الجذران •

: Ųƭ űƓȊ̓ــــƶƨ
متناظرين. بيعين تر جذرين يقبل معدوم غير مركب عدد كل v

w2 = z : المعادلة C في حل معناه مركب لعدد بيعين التر الجدرين تعيين v

مركب لعدد التربيعيين الجذرين عن البحث

ω2 = z : أي له تربيعي جذر ω = x + iy و مركب عدد z = a + ib : Ųƭ Ųƛ ŵȹƇǵ
x2 + y2 =

√
a2 + b2

x2 − y2 = a

2xy = b

: معناه

|ω2| = |z|
Re(ω2) = Re(z)

Im(ω2) = Im(z)

معناه هذا

W = 2 − 2i
√

3 ­ L = −1 − i ¬ : التالية المركبة للأعداد بيعية التر الجذور جد :Ɲŵſ ŴſƓ
Ųȉ
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حـل
L المركب للعدد التربيعي الجذر تعيين •

ω2 = α2 − β2 + i2αβ ومنه حقيقيان عددان β و α حيث ω = α + iβ أن نفرض
ω2 = L يعني L لـ تربيعي جذر ω2α2 = −1 +

√
2

αβ = −1
2

يعني


α2 + β2 =
√

2

α2 − β2 = −1

2αβ = −1

يعني α2 − β2 + i2αβ = −1 − i يعني


α =

√
−1 +

√
2

2
αأو = −

√
−1 +

√
2

2

αβ = −1
2

يعني
α2 =

−1 +
√

2
2

αβ = −1
2

يعني

هما: L لـ بيعيان التر الجذران إذن


α = −

√
−1 +

√
2

2

β =
1

2

√
−1 +

√
2

2

أو


α =

√
−1 +

√
2

2

β =
−1

2

√
−1 +

√
2

2

يعني

ω2 = −

√
−1 +

√
2

2
+ i

1

2

√
−1 +

√
2

2

و ω1 =

√
−1 +

√
2

2
+ i

−1

2

√
−1 +

√
2

2
W المركب للعدد التربيعي الجذر تعيين •
حقيقيان عددان y و x حيث z = x + iy نضع

x2 − y2 + i2xy = 2 − i2
√

3 يعني z2 = w يعني W لـ تربيعي جذر zx =
√

xأو3 = −
√

3

y = yأو1− = 1
يعني

x =
√

xأو3 = −
√

3

xy = −
√

3
يعني

x2 = 3

xy =
√

3
يعني


x2 + y2 = 4

x2 − y2 = 2

2xy = −2
√

3

يعني

z2 = −
√

3 + i و z1 =
√

3 − i : هما W المركب لعدد بيعين التر يين الجذر ومنه

الدرس سير حول ملاحظات
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أمᥖين :بـخدة الأستـاذ 12 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المركبة الأعداد التعلمية: الوحدة
الهندسة التعلم: ميدان

الثانية الدرجة من معادلة حل : الحصة موضوع

أميـن بـخدة : الأستاذ
يا 3ر : المستوى

ساعة 1� : المدة

معودم غير مركب عدد يلة طو و عمدة حساب : القʮلʻـــة الʮʴʯȜʸـات
الدرجة من معادلات حل : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź

تـــعــريــف

az2 + bz + c = 0 : الشكل من كتابتها يمكن معادلة كل C في الثانية الدرجة من معادلة نسمي -
a ̸= 0 و حقيقية أعداد c ، b ، a حيث

■

الʮــــʙهـــان

az2 + bz + c = a
[

z2 +
b
a

z +
c
a

]
= a

[(
z +

b
2a

)2
+

c
a
− b2

4a2

]
= a

[(
z +

b
2a

)2
+

4ac − b2

4a2

]
= a

[(
z +

b
2a

)2
− b2 − 4ac

4a2

]
(

z +
b

2a

)2
− b2 − 4ac

4a2 = 0 تكافئ az2 + bz + c = 0 (1) إذن
ω2 = ∆ أي ∆ لـ بيعيا تر جذرا ω ليكن ، ∆ = b2 − 4ac )نضع

z +
b

2a
− ω

2a

)(
z +

b
2a

+
ω

2a

)
= 0 تكافئ (z +

b
2a

)2
−

(
ω

2a

)2

= 0 تكافئ (1)

z =
−b − ω

2a
أو z =

−b + ω

2a
تكافئ

(
z +

b
2a

+
ω

2a

)
= 0 أو

(
z +

b
2a

− ω

2a

)
= 0 تكافئ

: حقيقية بمعاملات الثانية الدرجة من المعادلات

مــبرهنة

a ̸= 0 و حقيقية أعداد c و b ، a حيث az2 + bz + c = 0 :z المركب المجهول ذات المعادلة لتكن
المعادلة هذه مميز ∆ = b2 − 4ac : لدينا

z0 =
−b
2a

: مضاعفا حلا تقبل المعادلة ∆ = 0 كان إذا •
z2 =

−b +
√

∆

2a
و z1 =

−b −
√

∆

2a
: هما متمايزين حقيقين حلين تقبل المعادلة ∆ > 0 كان إذا •

z2 =
−b + ω

2a
و z1 =

−b − ω

2a
: هما مترافقين مركبين حلين تقبل المعادلة ∆ < 0 كان إذا •

∆ : لـ تربيعي جذر ω : حيث
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:Ɲŵſ ŴſƓ Ųȉ
: التالية المعادلات من كل C في حل

2z2 − 6z + 5 = 0 1

z2 + 3 = 0 2

z2 − 8
√

3z + 64 = 0 3

حقيقي. عدد θ حيث z2 − 2 sin(θ)z + 1 = 0 4

حـل
تقبل (1) المعادلة ومنه √

∆ = −2i أو √∆ = 2i ومنه ∆ = (−6)2 − (4 × 5 × 2) = −4 = (2i)2 1

s =

{
3 − i

2
;

3 + i
2

}
ومنه z2 =

6 + 2i
4

=
3 + i

2
و z1 =

6 − 2i
4

=
3 − i

2
: حيث z2 و z1 حلين

s =
{

i
√

3;−i
√

3
} ومنه z = −i

√
3 أو z = i

√
3 تكافئ z2 = −3 = (

√
3i)2 تكافئ z2 + 3 = 0 2

: حيث z2 و z1 هما حلين تقبل (3) المعادلة ومنه ∆ = (−8
√

3)2 − (4 × 64) = −64 = (8i)2 3

S =
{

4
√

3 + 4i; 4
√

3 − 4i
} ومنه z2 =

8
√

3 − 8i
2

= 4
√

3 − 4i و z1 =
8
√

3 + 8i
2

= 4
√

3 + 4i

∆ = (−2 sin θ)2 − 4 = 4 sin2 θ− 4 = 4(sin2 −1) 4
∆ = −4 cos2 θ = (2i cos θ)2 ومنه sin2 θ− 1 = − cos2 θ ومنه sin2 θ+ cos2 θ = 1 لدينا

z1 =
2 sin θ+ 2i cos θ

2
= sin θ+ i cos θ حيث z2 و z1 هما حلين تقبل (4) المعادلة ومنه

s = {sin θ+ i cos θ; sin θ− i cos θ} ومنه z1 =
2 sin θ− 2i cos θ

2
= sin θ− i cos θ و

: الثانية الدرجة من معادلات إلى حلها يؤول معادلات

:Ɲŵſ ŴſƓ Ųȉ
p(z) = z3 − 12z2 + 48z − 72 : حيث z المركب للمتغير حدود كثير p(z)

p(z) حدود لـكثير جذر 6 أن تحقق 1

p(z) = (z − 6)(z2 + αz + β) z مركب عدد كل أجل من بحيث β و α الحقيقين العددين جد 2

p(z) = 0 المعادلة C في حل 3

ح᧲᧲᧲᧲᧲᧲᧲᧲᧲᧲ل
p(z) حدود لـكثير جذر 6 أن التحقق 1

p(z) الحدود لـكثير جذر 6 ومنه p(6) = 63 − 12 × 62 + 48 × 6 − 72 = 216 − 432 + 288 − 72 = 0

p(z) = (z − 6)(z2 − 6z + 12) : ومنه 2
β = 12 و α = −6 نجد: بالمطابقة و

z3 − 12z2 + 48z − 72
−z3 + 6z2

−6z2 + 48z
6z2 − 36z

12z − 72
−12z + 72−12z + 72

0

z − 6

z2 − 6z + 12

z = 6 تكافئ (z − 6)(z2 − 6z + 12) = 0 تكافئ p(z) = 0 3
z2 − 6z + 12 = 0 المعادلة لنحل ،إذن z2 − 6z + 12 = 0 أو

حلين للمعادلة ومنه ∆ = (−6)2 − 4 × 12 = −12 = (i2
√

3)2

: حيث z2 و z1

z2 =
6 − i2

√
3

2
= 3 − i

√
3 و z1 =

6 + i2
√

3
2

= 3 + i
√

3

S =
{

6; 3 − i
√

3; 3 − i
√

3
} : ومنه

التقويم
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:Ɲŵſ ŴſƓ Ųȉ
z =

3i(z + 2i)
z − 2 + 3i

(1) : التالية z المجهول ذات المعادلة C المركبة الأعداد مجموعة في نعتبر
. المعادلة هذه C في حل . z ̸= 2 − 3i حيث

حـل
z2 − 2z − 6 = 0 تكافئ z2 − 2z + 3iz = 3iz − 6 تكافئ (1)

∆ = 4 − 4 × 1 × (−6) = −20 = (i2
√

5)2

z2 =
2 − i2

√
5

2
= 1 − i

√
5 و z1 =

2 + i2
√

5
2

= 1 + i
√

5 : حيث z2 و z1 حلين تقبل المعادلة ومنه
S =

{
1 + i

√
5; 1 − i

√
5
} هي S الحلول مجموعة إذن

:Ɲŵſ ŴſƓ Ųȉ
p(z) = z4 − 2

√
3z3 + 8z2 − 8

√
3z + 16 : جيث z المركب للمتغير حدود كثير p(z)

p(z) = (z2 + 4)(z2 − 2
√

3z + 4) أن تحقق 1

.p(z) = 0 المعادلة C في حل 2

حـل
p(z) = (z2 + 4)(z2 − 2

√
3z + 4) أن التحقق 1

(z2 + 4)(z2 − 2
√

3z + 4) = z4 − 2
√

3z3 + 4z2 + 4z2 − 8
√

3z3 + 16

= z4 − 2
√

3z3 + 8z2 − 8
√

3z + 16

= p(z)

z2 + 4 = 0 أو z2 − 2
√

3z + 4 = 0 تكافئ (z2 + 4)(z2 − 2
√

3z + 4) = 0 تكافئ p(z) = 0 2
z2 + 4 = 0 (1) المعادلة لنحل

z = −2i أو z = 2i ومنه z2 = −4 = (2i)2 تكافئ (1)

∆ = −4 = (2i)2 ، z2 − 2
√

3z + 4 = 0 (2) المعادلة لنحل
z2 =

2
√

3 − 2i
2

=
√

3 − i و z1 =
2
√

3 + 2i
2

=
√

3 + i : حيث z2 و z1 حلين تقبل المعادلة ومنه
S
{

2i;−2i;
√

3 + i;
√

3 − i
} : هي S الحلول مجموعة إذن

رقـ{105}᧴م صف᧳{152}᧴حة تمرين حل

X =
2 + 3x + x2 + u2

(1 + x)2 + y2 ومنه
Y =

2y + xy − y − xy
(1 + x)2 + y2 و

Im(Z) = 0 يعني حقيقي Zy = 0

(1 + x)2 + y2 ̸= 0
yيعني = 0

(x, y) ̸= (−1, 0)
يعني

بإستثناء الفواصل محور حامل هي M النقط مجموعة إذن
A (−1, 0) النقطة

z = x + iy و Z = X + iY لدينا:

Z =
2 + z̄
1 + z̄

=
2 + x − iy
1 + x − iy

=
(2 + x − iy)(1 + x + iy)

(1 + x)2 + y2

=
2 + 3x + x2 + u2 + i(2y + xy − y − xy)

(1 + x)2 + y2

=
2 + 3x + x2 + u2

(1 + x)2 + y2 + i
2y + xy − y − xy
(1 + x)2 + y2

الدرس سير حول ملاحظات
.................................................................................................................................................... -
....................................................................................................................................................
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أمᥖين :بـخدة الأستـاذ 13 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المتتاليات التعلمية: الوحدة
الهندسة التعلم: ميدان

-تذكير- النقطية يلات تحو : الحصة موضوع

أميـن بـخدة : الأستاذ
يا 3ر : المستوى

ساعة 1� : المدة

المركبة الأعداد و النقطية يلات التحو حول أولية مفاهيم : القʮلʻـــة الʮʴʯȜʸـات
سابقا المدروسة النقطية يلات بالتحو التذكير : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź
الإنسحاب

تعريف
−→u

M

M′

M′ النقطة المستوي من M نقطة بكل يرفق الي النقطي يل التحو هو −→u شعاعه الذي الإنسحاب
−−→
MM′ = −→u : حيث المستوي من

معدوم غير −→u شعاعه إنسحاب t−→u -

صامدة نقطة أية يقبل لا الإنسحاب ◀
−→
AB =

−−→
A′B′ تحقق: (A′; B′) ثنائية هي (A; B) نقطة ثنائية صورة ◀

المسافات) على تقايس(يحافظ الإنسحاب ◀
التوازي. و المرجح الزوايا، أقياس ، الإستقامية على يحافظ الإنسحاب ◀

مطابق يل تحو هو −→o شعاعه الذي الإنسحاب ⋆

إلىخـــــــــــواصخـــــــــــواص أظف

مطويتك

التحاكي

تعريف

. معدوم غير حقيقي عدد k و ثابتة نقطة Ω

المستوي من M′ النقطة المستوي من M نقطة بكل يرفق الذي النقطي يل التحو هو k نسبته و Ω مركزه الذي التحاكي
Ω M M′

k ∈ R∗ −{1} مع −−→ΩM′ =
−→
ΩM حيث:

Ω المركز هي وحيدة صامدة نقطة للتحاكي ◀
−→
AB = k

−−→
A′B′ تحقق: (A′; B′) ثنائية هي k ونسبته Ω مركزه الذي بالتحاكي (A; B) ثنائية صورة ◀

k نسبته h تحاكي بواسطة r قطرها نصف و ω مركزها (C) دائرة صورة ◀
r′ = |k| · r قطرها نصف و ω′ = h(ω) مركزها (c′) دائرة : هي

. إستقامية في Ω و M′ ، M النقط فإن k نسبته و Ω مركزه الذي بالتحاكي M صورة M′ كانت إذا ◀
. تقايسا ليس التحاكي إذن A′B′ ̸= AB : فإن |k| ̸= 1 كان إذا أنه نلاحظ ◀

S′ = k2S حيث S′ مساحنه هندسي شكل هو k نسبته بتحاك S مساحته هندسي شكل صورة ◀

إلىخـــــــــــواصخـــــــــــواص أظف

مطويتك
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الدوران

تعريف

Ω

M

M′

θ

=

=

. حقيقي عدد θ و ثابتة نقطة Ω

يرفق و بنفسها Ω النقطة يرفق الذي النقطي يل التحو هو θ زاويته و Ω مركزه الذي الدوران
ΩM = ΩM′ : حيث المستوي من M′ النقطة Ω تختلفعن المستوي من M نقطة →−)بكل

ΩM;
−−→
ΩM′

)
= θ و

(A′B′) الثنائية هي θ زاويته و Ω مركزه الذي بالدوران (A; B) ثنائية كل صورة ◀(−→
AB;

−−→
A′B′

)
= θ و A′B′ = AB تحقق:

( المسافات على (يحافظ تقايس هو الدوران ◀
المرجح و إتجاهها و الزوايا ،أقياس الإستقامية على يحافظ الدوران ◀

Ω هي وحيدة صامدة نقطة له معدومة غير زاويته و Ω مركزه الذي الدوران ◀
المطابق يل التحو هو الحالة هذه في و θ ية الزاو و Ω مركزه الذي بالدوران صامدة نقط كل فإن θ = 0 كان إذا ◀

R دوران بواسطة r قطرها ونصف ω مركزها (C) الدائرة صورة ◀
.r قطرها ونصف ω′ = R(ω) مركزها (C′) دائرة : هي

إلىخـــــــــــواصخـــــــــــواص أظف

مطويتك

148-149 صفحة 77 و 71 و 68 تمرين حل

الدرس سير حول ملاحظات
.................................................................................................................................................... -
....................................................................................................................................................
...................................................................................................................................................
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أمᥖين :بـخدة الأستـاذ 14 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المتتاليات التعلمية: الوحدة
التحليل التعلم: ميدان

المركبة الأعداد و الإنسحاب : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

المركبة الأعداد و النقطية يلات التحو حول أولية مفاهيم : القʮلʻـــة الʮʴʯȜʸـات
للإنسحاب المركبة العبارة تعيين : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź
النفسية التهيئة

الماضية السنة بمكتسبات التذكير
الإنسحاب و المركبة )الأعداد

O;−→u ,−→v
) المتجانس المتعامد المعلم إلى منسوب المركب المستوي مايلي كل في

نشاط
M صورة هي z′ اللاحقة ذات M′ zو لاحقتها نقطة M لتكن ، z−→u اللاحقة ذو −→u شعاعه الذي الإنسحاب نعتبر

t−→u بالإنسحاب
. z−→u بدلالة −−→MM′ الشعاع لاحقة عينّ 1

. z بدلالة z′ أكتب 2

نشاط مناقشة
z−−→

MM′ = z−→u تكافئ −−→MM′ = −→u معناه M′(z′) النقطة إلى M(z) النقطة يحول إنسحاب t−→u 1

للإنسحاب المركبة العبارة هي و z′ = z + z−→u تكافئ z′ − z = z−→u تكافئ z−−→
MM′ = z−→u 2

z′ اللاحقة ذات M′ النقطة z حقتها لا M نقطة بكل يرفق الذي النقطي يل التحو
b صورة −→u شعاعه إنسحاب هو مركب) عدد b) z′ = z + b : حيث

إلىخاصيةخاصية أظف

مطويتك

¶ مثال
مثال ¶

−→u (1;−1) شعاعه إنسحاب هو z′ = z + 1 + i المركبة عبارته الذي يل التحو طبيعة

· مثال
مثال ·

z′ = z + 2 + 3i هي: −→u (2; 3i) شعاعه الذي للإنسحاب المركبة العبارة
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تطبيق:
3 + 5i و 1 + 2i لاحقتاهما B و A

.B إلى A يحول الذي t للإنسحاب المركبة الكتابة عين 1

.t بالإنسحاب Eصورة E′ النقطة لاحقة عينّ ، 2 − i لاحقتها نقطة E 2

بالإنسحاب 3 قطرها نصف و A مركزها التي (C) الدائرة لصورة معادلة عينّ 3
t

149 صفحة 71 و 70 تمرين حل

الدرس سير حول ملاحظات
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....................................................................................................................................................
...................................................................................................................................................
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أمᥖين :بـخدة الأستـاذ 15 رقᥔᥔᥔᥔᥔᥔᥔᥔم مᥕذكـرة

السمار-غليزان مختار ساجي ثانوية

المركبة الأعداد التعلمية: الوحدة
الهندسة التعلم: ميدان

المركبة الأعداد و التحاكي : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

للتحاكي الشعاعية العبارة : القʮلʻـــة الʮʴʯȜʸـات
للتحاكي المركبة الكتابة : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź

�
5د

�
20د

النفسية التهيئة
الماضية السنة بمكتسبات التذكير

التحاكي و المركبة )الأعداد
O;−→u ,−→v

) المتجانس المتعامد المعلم إلى منسوب المركب المستوي مايلي كل في
نشاط

الترتيب على a و ZΩ لاحقتيهما المستوي من متمايزتان نقطتان Ω و M

f (M) = M′ أي f يل بالتحو M صورة M′ ، Z′ لاحقتها المستوي من نقطة M′ نقطي، يل تحو f
−−→
ΩM′ = k

−→
ΩM : فإن a ∈ R∗ أجل من أنه حيث

a ∈ R∗ −{1} و a = −1 ، a = 1 لما f يل التحو طبيعة a المعدوم الغير الحقيقي العدد قيم حسب عينّ 1

a ∈ R∗ −{1} بوضع 2
−→
ΩM الشعاع لاحقة بدلالة −−→ΩM′ الشعاع لاحقة عينّ أ)

Z بدلالة Z′ أكتب ب)
نشاط حـل

−−→
ΩM′ = k

−→
ΩM : لدينا f التحويل طبيعة تحديد 1

Ω للنقطة بالنسبة المركزي التناظر هو f يل التحو أن أي −−→ΩM′ = −−→
ΩM : فإن a = −1 إذاكان ⋆

Ω مركزه و a = −1 نسبته تحاكي نقول أن يمكننا أو
. تطابقي يل تحو f .إذن M′ = M أن أي −−→ΩM′ =

−→
ΩM : فإن a = 1 كان إذا ⋆

a نسبته و Ω مركزه تحاكي هو f يل التحو فإن a ∈ R∗ −{1} كان إذا ⋆
−→
ΩM الشعاع لاحقة ′ΩM→−−بدلالة الشعاع لاحقة تعي¬ن 2

للتحاكي المختصرة العبارة هي و Z′ − ZΩ = a(Z − ZΩ) تكافئ ΩM′ = aΩM معناه f (M) = M′

b = (1 − a)ZΩ بوضع و Z′ = aZ + (1 − a)ZΩ ومنه Z′ − ZΩ = a(Z − ZΩ) لدينا 3

للتحاكي. المركبة العبارة هي و Z′ = aZ + b نجد
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�
5د

�
5د

�
5د

�
5د

�
15د

للتحاكي المختصرة العبارة

. zΩ لاحقتها المستوي من ثابتة نقطة Ω ، 1 عن يختلف و معدوم غير حقيقي عدد a

z′ لاحقتها نقطة M′ و z لاحقتها نقطة M
z′ − zΩ = a(z − zΩ) : هي M′ إلى M يحول الذي و a نسبته و Ω مركزه الذي للتحاكي المختصرة العبارة

· ·خاصية إلىخاصية أظف

مطويتك

¶ مثال
مثال ¶

zA = 2 + i لاحقتها نقطة A

3 نسبته و A مركزه الذي للتحاكي المختصرة العبارة أكتب
z′ − zA = 3(z − zA) : هي 3 نسبته و A مركزه الذي للتحاكي المختصرة العبارة -

z′ − 2 − i = 3(z − 2 − i) أي

: Ųƭ űƓȊ̓ــــƶƨ
h(Ω) = Ω أن أي Ω المركز هي و وحيدة صامدة نقطة يقبل Ω المركز ذو h التحاكي

للتحاكي المركبة العبارة

: حيث z′ اللاحقة ذات M′ النقطة z لاحقتها M نقطة بكل يرفق الذي النقطي يل التحو
Ω مركزه الذي التحاكي هو مركب عدد b و عن1 يختلف و معدوم غير حقيقي عدد a : مع z′ = az + b

a ونسبته zΩ =
b

1 − a
اللاحقة ذات

إلىخاصية¶خاصية¶ أظف

مطويتك

· مثال
مثال ·

z′ = −3
2

z − 2 + 3i المركبة عبارته الذي النقطي يل التحو طبيعة عينّ
−3

2
نسبته تحاكي هو z′ = −3

2
z − 2 + 3i المركبة عبارته الذي النقطي يل التحو طبيعة -

−2 + 3i

1 +
3
2

= −4
5
+

6
5

i المركب العدد مركزه ولاحقة

تطبيق:
الترتيب على zC = −1 + 2i و zB = 3 − 2i ، zA = i لواحقها نقط ثلاث C و B ، A

. C إلى B يحول و A مركزه الذي h للتحاكي المركبة العبارة عينّ 1

h بالتحاكي C صورة D النقطة لاحقة zDّعين 2

150 صفحة و82 79 تمرين حل
الدرس سير حول ملاحظات
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السمار-غليزان مختار ساجي ثانوية

المركبة الأعداد التعلمية: الوحدة
الهندسة التعلم: ميدان

المركبة الأعداد و الدوران : الحصة موضوع
أميـن بـخدة : الأستاذ

يا 3ر : المستوى
ساعة 1� : المدة

المركبة الأعداد و النقطية يلات التحو حول أولية مفاهيم : القʮلʻـــة الʮʴʯȜʸـات
للدوران المركبة العبارة تعيين : الʯʴʸهʗفة الؒفاءات

،الأنترنت المدرسـي الكتاب : الʙʸاجع

ŲƬــƅǮəź ƈƆƅــǭź ƇǴŻــ űſƖ ƣƂźــƇȆəź

الماضية السنة بمكتسبات التذكير
الدوران و المركبة )الأعداد

O;−→u ,−→v
) المتجانس المتعامد المعلم إلى منسوب المركب المستوي مايلي كل في

نشاط
θ ∈ R مع θ زاويته و zΩ اللاحقة ذات Ω مركزه الذي R الدوران نعتبر

.R بالدوران M صورة هي z′ اللاحقة ذات M′ و z لاحقتها نقطة M لتكن
. الأسي الشكل على أكتبه ثم ، a =

z′ − zΩ

z − zΩ
المركب العدد عمدة و يلة طو عينّ 1

z بدلالة z′ أكتب 2
نشاط مناقشة

|z′ − zΩ|
|z − zΩ| = 1 تكافئ |z′ − zΩ| = |z − zΩ| تكافئ −−→ΩM′ =

−→
ΩM تكافئ ΩM′ = ΩM 1

|a| = 1 : بالتالي و
∣∣∣∣z′ − zΩ

z − zΩ

∣∣∣∣ = 1 ومنه
a = eiθ إذن . arg(a) = θ ومنه arg

(
z′ − zΩ

z − zΩ

)
= θ معناه (−→ΩM;

−−→
ΩM′

)
= θ لدينا أخرى جهة من

للدوران المختصرة العبارة هي و z′ − zΩ = eiθ(z − zΩ) تكافئ z′ − zΩ

z − zΩ
= eiθ لدينا: 2

a = eiθ : حيث z′ = az + b نجد b = (1 − eiθ)zΩ : بوضع z′ = eiθz + (1 − eiθ)zΩ ومنه
θ ية الزاو ذي R للدوران المركبة العبارة هي و

z′ اللاحقة ذات M′ النقطة z حقتها لا M نقطة بكل يرفق الذي النقطي يل التحو
مركب عدد b و 1 يلته طو حقيقي غير مركب عدد a : مع z′ = az + b : حيث

arg(a) زاويته و zΩ =
b

1 − a
اللاحقة ذات Ω مركزه الذي الدوران هو

¶ ¶خاصية إلىخاصية أظف

مطويتك

zΩ لاحقتها المستوي من ثابتة نقطة Ω ، 1 يلته طو حقيقي غير مركب عدد a

z′ لاحقتها نقطة M′ و z لاحقتها نقطة M
M′ النقطة إلى M النقطة يحول الذي و arg(a) زاويته و Ω مركزه الذي للدوران المختصرة العبارة

a = eiθ : حيث z′ − zΩ = a(z − zΩ) : هي

· ·خاصية إلىخاصية أظف

مطويتك
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: Ųƭ űƓȊ̓ــــƶƨ
b = (1 − a)zΩ حيث z′ = az + b ′zمعناه = az + (1 − a)zΩ : معناه z′ − zΩ = a(z − zΩ)

¶ مثال
مثال ¶

z′ = iz + 2 − i : المركبة عبارته الذي يل التحو طبيعة
zΩ =

2 − i
1 − i

=
3
2
+

1
2

i اللاحقة ذات Ω ومركزه arg(i) =
π

2
زاويته دوران هو

· مثال
مثال ·

π

3
زاويته و zΩ =

√
3

2
− 1

2
i اللاحقة ذات Ω مركزه الذي للدوران المركبة العبارة

b = (1 − a)zΩ : حيث z′ =

(
1
2
+

√
3

2

)
z − i : ومنه z′ = ei π

3 z + b : هي
المطلوب) على للحصول المختصرة العبارة إستعمال (يمكن

. الترتيب على zB = 4 + 2i و zA = 1 − 2i لاحقتاهما نقطتان B و A تطبيق:
. π

2
زاويته و A مركزه الذي R بالدوران B صورة B′ النقطة لاحقة z′B لنعين ⋆

z′B = i(zB − zA) + zA ومنه z′B − zA = ei π
2 (zB − zA) معناه R(B) = B′ : لدينا

z′B = i(4 + 2i − 1 + 2i) + 1 − 2i = −3 + i : إذن

تطبيق:
الترتيب على zC = −1 + 2i و zB = zA ، zA = 3 + 3i لواحقها نقط ثلاث C و B ، A

B إلى A يحول و Oمركزه الذي R للدوران المركبة العبارة أعط 1

ABO المثلث طبيعة إستنتج 2

R بالدوران C صورة D النقطة لاحقة zD عينّ 3

θ ∈ R مع z = 2 + i + eiθ : حيث z اللاحقة ذات M النقط مجموعة (C) عينّ 4

R بالدوران (C) صورة عينّ 5

150 صفحة و83 80 تمرين حل

الدرس سير حول ملاحظات
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:
الدراسية السنة

z = x + i y

المركبة الأعداد
دروس ملخص
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هندسية مسائل حل في المركبة الأعداد توظيف
النقط استقامية

استقامية. على C ,B ,A النقط أن نستنتج A ̸= B حيث zC − zA

zB − zA
= k , k ∈R كان إذا •

استقامية. على O,B ,A النقط أن نستنتج A ̸=O حيث zB

zA
= k , k ∈R كان إذا •

النقط تداور

.r القطر ونصف O المركز ذات الدائرة نفس إلى تنتمي D و C ,B ,A النقط أن نستنتج |zA | = |zB | = |zC | = |zD | = r كان: إذا •
. r القطر ونصف ω المركز ذات الدائرة نفس إلى تنتمي D و C ,B ,A النقط أن نستنتج |zA −zω| = |zB −zω| = |zC −zω| = |zD −zω| = r كان: إذا •

: مستقيمين أو شعاعين توازي

. (B D) Ë (AC ) أو −−→B D Ë−−→
AC أن نستنتج A ̸=C و B ̸= D حيث zD − zB

zC − zA
= k , k ∈R∗ كان إذا •

: مستقيمين أو شعاعين تعامد

.(B D) ⊥ (AC ) أو −−→B D ⊥−−→
AC أن نستنتج A ̸=C و B ̸= D حيث zD − zB

zC − zA
= i y , y ∈R∗ كان إذا •

: خاص مركب عدد z n بحيث n الطبيعية الأعداد تعيين
: أن تذكر ، z n = r n einθ إذن z = r eiθ الأسي الشكل ليكن

. nθ = kπ : يعني حقيقي z n •
. nθ = 2kπ : يعني موجب حقيقي z n •

. nθ = (2k +1)π : يعني سالب حقيقي z n •
. nθ = π

2
+kπ : يعني صرف تخيلي z n •

. nθ = π

2
+2kπ : يعني Im(z n ) > 0 و صرف تخيلي z n •

. nθ = π

2
+ (2k +1)π : يعني Im(z n ) < 0 و صرف تخيلي z n •
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المركبة الأعداد في النقط مجموعة
البياني التمثيل Z اللاحقة ذات M النقط مجموعة المركبة العبارة

k

A

خالية. مجموعة : k < 0 •
. A النقطة هي النقط مجموعة : k = 0 •

.k قطرها ونصف A مركزها دائرة هي النقط مجموعة : k > 0 •
|z − zA| = k

A

B

[AB ] المستقيمة القطعة محور هي النقط مجموعة |z − zA| = |z − zB |

k

A .k قطرها ونصف A مركزها دائرة هي النقط مجموعة z − zA = keiθ

تمامََا موجب ثابت k
θ ∈R

θ

A

النقطة باستثناء [AM) مستقيم نصف هو النقط ⃗)مجموعة
i ;
−−→
AM

)
= θ حيث A

z − zA = keiθ

ثابت θ
k ∈R∗+

θ

A

A النقطة باستثناء (AM) المستقيم هو النقط ⃗)مجموعة
i ;
−−→
AM

)
= θ حيث

arg(z − zA) = θ+kπ
k ∈Z

θ

A

باستثناء [AM) المستقيم نصف هو النقط ⃗)مجموعة
i ;
−−→
AM

)
= θ حيث A النقطة

arg(z − zA) = θ+2kπ
k ∈Z

A
B

باستثناء [AB ] قطرها التي الدائرة هي النقط مجموعة
. B و A النقطتين

arg
(

z − zA

z − zB

)
= π

2
+kπ

k ∈Z

A
B [AB ] قطرها التي الدائرة نصف هي النقط مجموعة

. B و A النقطتين باستثناء arg
(

z − zA

z − zB

)
= π

2
+2kπ

k ∈Z

A
B

[AB ] قطرها التي الدائرة نصف هي النقط مجموعة
. B و A النقطتين باستثناء arg

(
z − zA

z − zB

)
=−π

2
+2kπ

k ∈Z

A B .B و A النقطتين باستثناء (AB ) المستقيم هو النقط مجموعة k ∈Z , arg
(

z − zA

z − zB

)
= kπ

A B .B و A النقطتين باستثناء [AB ] المستقيمة القطعة هو النقط مجموعة arg
(

z − zA

z − zB

)
=π+2kπ

k ∈Z

A
B .[AB ] القطعة باستثناء (AB ) المستقيم هو النقط مجموعة k ∈Z مع arg

(
z − zA

z − zB

)
= 2kπ
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ABC المثلث طبيعة على التعرف
الهندسي التفسير المركبة العلاقة

AB = AC
الساقين. متساوي ABC المثلث

zB − zA

zC − zA
= eiθ

AB = AC •
(AC ) ⊥ (AB ) أي (−−→

AC ;
−−→
AB

)
=±π

2
أي arg

(
zB − zA

zC − zA

)
=±π

2
•

الساقين. ومتساوي A في قائم ABC المثلث •

zB − zA

zC − zA
= e±

π
2 =±i

(AC ) ⊥ (AB ) أي (−−→
AC ;

−−→
AB

)
=±π

2
أي arg

(
zB − zA

zC − zA

)
=±π

2
•

.A في قائم ABC المثلث •

zB − zA

zC − zA
= r e±

π
2 = ai

AB = AC •(−−→
AC ;

−−→
AB

)
=±π

3
أي arg

(
zB − zA

zC − zA

)
=±π

3
•

الأضلاع. متقايس ABC المثلث •

zB − zA

zC − zA
= e±

π
3 i

C A =C B •(−−→
AC ;

−−→
AB

)
=±π

4
أي arg

(
zB − zA

zC − zA

)
=±π

4
•

الساقين. ومتساوي C في قائم ABC المثلث •

zB − zA

zC − zA
=

p
2

2
e±

π
4 i

ABC D الرباعي طبيعة على التعرف
التعليل يكون ABC D الرباعي

−−→
AB =−−→

DC •
zB − zA = zC − zD •

zA + zC

2
= zB + zD

2
متناصفة الأقطار •

الأضلاع متوازي

AB = AD و −−→
AB =−−→

DC •
|zB − zA| = |zD − zA| و zB − zA = zC − zD •

(AC ) ⊥ (B D) و zA + zC

2
= zB + zD

2
ومتعامدة متناصفة الأقطار •

المعين

−−→
AB ·−−→AD = 0 أي (AB ) ⊥ (AD) و AB ̸= AD ، −−→AB =−−→

DC •
|zC − zA| = |zD − zB | و zA + zC

2
= zB + zD

2
ومتقايسة متناصفة الأقطار •

المستطيل

−−→
AB ·−−→AD = 0 أي (AB ) ⊥ (AD) و AB = AD ، −−→AB =−−→

DC •
(AB ) ⊥ (AD) و |zB − zA| = |zD − zB | ، zB − zA = zC − zD •

ومتعامدة ومتقايسة متناصفة الأقطار •
. (AC ) ⊥ (B D) و |zC − zA| = |zD − zB | و zA + zC

2
= zB + zD

2

المربع
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