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  تعريف  
و ليكن من Iدالة معرفة على مجال  fلتكن  C منحنيها البياني في معلم ; ,O I J.  نقول عنf أنها مستمرة علىI  إذا

استطعنا رسم منحنيها C .بدون رفع القلم وفق خط مستمر 

        .الدوال المرجعية مستمرة على كل مجال من مجموعة تعريفها 

         الدوال كثيرات الحدود مستمرة على. 

        فها.الدوال الناطقة ) حاصل قسمة كثيري حدود ( مستمرة على كل مجال من مجموعة تعري 

  مبرهنة القيم المتوسطة  
f دالة معرفة و مستمرة على مجال ;a bمن أجل كل عدد حقيقي .k  محصور بين f a و f bيوجد على الأقل عدد حقيقي ،c 

بحيث  bو aمحصور بين f c k. 
دالة معرفة و مستمرة على مجال fإذا كانت   بصيغة أخرى:      ;a b فإنه من أجل كل عدد حقيقيk  محصور 

بين  f a و f bالمعادلة ، f x k تقبل على الأقل حلاc محصورا بينa وb. 

القيم المتوسطة تؤكد فقط وجود حل على الأقل للمعادلة مبرهنة   ملاحظة f x k  أما تعيين الحلول أو قيم 

 مقربة لها فيتم بإتباع خوارزميات مختلفة.               

 التفسير البياني    
    f دالة معرفة و مستمرة على مجال ;a b و ليكن C  

منحنيها البياني في معلم ; ,O I J. 

محصور بين  kكل عدد حقيقي من أجل f a و f bالمستقيم،  ذو 

yالمعادلة  k  يقطع على الأقل مرة واحدةالمنحني C في نقطة فاصلتهاc 

.) بالنسبة للشكل المقابلbو aمحصورة بين   يقطع C  في ثلاث نقط 

 (. 3cو 1c ،2cالترتيب فواصلها على

 

  نهايات الدوال المرجعية 
 

   
 
 
 
  العمليات على النهايات 

      f  وg  .دالتانa  يمثل عددا حقيقيا أو   أو . 

 

 

                                                                                                    

    
 

lim lim lim
x x x

x x x
  

        

3 3 2 2lim lim lim lim
x x x x

x x x x
   

           

0 0

1 1 1 1
lim lim lim 0 lim 0

x xx xx x x x    

         

1 
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 نهاية مجموع دالتين: 
   l l l lim ( )

x a
f x


 

     l lim ( )
x a

g x


 

 ح ع ت    l l  lim ( ) ( )
x a

f x g x


 

 ير :نهاية جداء دالتين 
 

0 0    0l  0l  0l  0l  l lim ( )
x a

f x


 

         l lim ( )
x a

g x


 

       l ح ع ت ح ع ت l  lim ( ) ( )
x a

f x g x


 

 نهاية حاصل قسمة دالتين: 
    0     l l l lim ( )

x a
f x


 

    0 0l  0l  0l  0l    l  lim ( )
x a

g x


 

 ح
 ع
 ت

 ح
 ع
 ت

 ح
 ع
 ت

 ح
 ع
 ت

 ح
 ع
 ت

    0 0 
l

l
 

( )
lim

( )x a

f x

g x

 
 
 

 

 
ح ع ت (" عدم التعيين" تسمى الحالات التي لا تسمح فيها النظريات السابقة من استنتاج النهاية بحالات   ملاحظة (  

 : يوجد أربع حالات عدم التعين
0

0
 ،




 ،0 ( )  و   

 لدالة كثير حدود هي نهاية حدها الأعلى درجة. و عند النهاية عند       قاعدة

 لدالة ناطقة هي نهاية حاصل قسمة الحدين الأعلى درجة. و عند النهاية عند        

 

   المستقيمات المقاربة 
    a وb .عددان حقيقيانf دالة معرفة على مجالI  و C  تمثيلها البياني في معلم ; ,O I J. 

 

 التمثيل البياني المستقيم المقارب النهاية

 lim
x a

f x


  
 أو
 lim

x a
f x


  

المستقيم  ذو المعادلةx a 

الموازي لمحور التراتيب مستقيم و 

مقارب للمنحني C 
 

 lim
x

f x b


 
 أو
 lim

x
f x b


 

المستقيم D ذو المعادلةy b  

و الموازي لمحور الفواصل مستقيم 

مقارب للمنحني Cعندأو عند

  
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   lim 0
x

f x ax b


     
 أو

   lim 0
x

f x ax b


     

المستقيم d ذو المعادلةy ax b   

هو مستقيم مقارب مائل للمنحني C

 أو عندعند
 

 
إذا كانت الدالة   ملاحظةf :معرفة كما يلي   f x ax b x   مع lim 0

x
x


 أو lim 0

x
x


  

y:ذو المعادلةفمن  الواضح أن المستقيم                ax b  مستقيم مقارب مائل للمنحني الممثل للدالةf. 

 

 

    الوضع النسبي لمنحن والمستقيم المقارب 

لدراسة وضعية المنحني     Cالممثل لدالةf بالنسبة إلى مستقيم مقارب له معادلتهy ax b   نقوم بدراسة إشارة الفرق

   f x ax b   . 

إذا كان                0f x ax b     تكون وضعية C .تحت المستقيم المقارب المائل 

  إذا كان              0f x ax b     تكون وضعية C .فوق المستقيم المقارب المائل 

 الدالة مركب 

الدالة مركب دالتين 
I،من xبحيث من أجل كل Iدالة معرفة على مجال uو Jدالة معرفة على مجال v :تعريف    u x J. 

vالترتيب هي الدالة التي نرمز لها بالرمز بهذا vو uالدالة المركبة من الدالتين               u و المعرفة علىI  

بـ :                    v u x v u x    و نقرأ .v  دائرةu  ل ـx . 

كما يلي:   على المعرفقين vو uنعتبر الدالتين     :مثال  22 3u x x    و  3 1v x x   

          الدالةv u و لدينا:  معرفة على     2 22 3 6 10v u x v u x v x x        

          الدالةu v و لدينا:  معرفة على      23 1 18 12 1u v x u v x u x x x         

                                    

دالة مركب دالتين نهاية 
  a،b وc تمثل أعددا حقيقية أو أو.u ،v وf دوال حيثf v u. 

إذا كانت       lim
x a

u x b


  و إذا كانت lim
x b

v x c


  فإن lim
x a

f x c


 

المعرفة على المجال fنعتبر الدالة    :مثال    1;  ِـ ب
2 3

( )
1

x
f x

x





و نريد حساب   lim

x
f x


 

          f هي مركب الدالتينu وv  بهذا الترتيب حيث 
2 3

1

x
u x

x





و  v x x.(f v u ) 

بما أن               
2

lim lim 2
x x

x
u x

x 
    و 

2
lim 2
x

v x


   فإن lim 2
x

f x


 
   النهايات بالمقارنة 

  f،g وh دوال وl .عدد حقيقي 

* إذا كانت   lim
x

g x l


 و lim
x

h x l


  و إذا كان من أجلx  كبير بالقدر الكافي     g x f x h x    فإن

 lim
x

f x l


. 
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* إذا كانت   lim
x

g x


   و إذا كان من أجلx  كبير بالقدر الكافي   f x g x   فإن lim
x

f x


  

* إذا كانت   lim
x

g x


   و إذا كان من أجلx  كبير بالقدر الكافي   f x g x   فإن lim
x

f x


  

     تمدد هذه الخواص إلى حالتي النهاية عند   ملاحظة .و عند عدد حقيقي 

 

   العدد المشتق 
f دالة معرفة على مجالI من .a وa h عددان حقيقيان منI  0معh . 

النسبة 0إلىhيعني أنه لما يؤول aتقبل الاشتقاق عند fالقول أن
   f a h f a

h

 
تؤول إلى عدد حقيقي نرمز له بالرمز  f a  و

 . aعند fيسمى العدد المشتق للدالة

إذا قبلت الدالة   ملاحظةf الاشتقاق عند كل عدد حقيقيx منI نقول أنها تقبل الاشتقاق علىI  و تسمى 

الدالة                 :f x f x   الدالة المشتقة للدالةf. 

البياني التفسير 

فإن تمثيلها البياني aالاشتقاق عند fإذا قبلت     fC يقبل عند النقطة  ;A a f a  مماسا معامل توجيهه f a  :و معادلته

    y f a x a f a  . 

 معادلة المماس للمنحنى fC عند النقطةA ذات الفاصلةa :هي    y f a x a f a   

التفسير الاقتصادي 
 صنع وحدة إضافية. تعطى الكلفة الهامشية بالعلاقة: الكلفة الهامشية للإنتاج هي تزايد الكلفة الناتج عن

     1mC q C q C q   حيثC هي الدالة " الكلفة الإجمالية " نلاحظ أن C q  هو تقريب جيد ل ـ mC q في الاقتصاد نضع .

   mC q C q حيثC  هي الدالة المشتقة للدالة الكلفة الإجماليةC. 

  مركب مشتقة الدالة  
الاشتقاق على vو قبلت الدالة من Iالاشتقاق على مجال uإذا قبلت الدالة  u I  فإن الدالةv u   تقبل الاشتقاق 

     :و لدينا Iعلى        v u x v u x u x        
  مشتقة و اتجاه التغيراتال 

f دالة قابلة للاشتقاق على مجالI من. 
          إذا كان من أجل كلx منI،  0f x  ما عدا ممكن من أجل عدد محدود من القيم التي 

 .Iمتزايدة تماما على fمن أجلها، فإن الدالة  fتنعدم الدالة             

          إذا كان من أجل كلx منI،  0f x  ما عدا ممكن من أجل عدد محدود من القيم التي 

 .Iمتناقصة تماما على fمن أجلها، فإن الدالة  fتنعدم الدالة                 

          إذا كان من أجل كلx منI،  0f x   فإن الدالةf ثابتة علىI. 

   المحلية القيم الحدية 
f دالة معرفة على مجالI 0و منx عدد حقيقي منI. 

  القول أن 0f x قيمة حدية محلية عظمى للدالةf يعني أنه يوجد مجال مفتوحJ محتوى فيI 0و يشملx بحيث من أجل كلx 

J ،من   0f x f x. 

  القول أن 0f x قيمة حدية محلية صغرى للدالةf يعني أنه يوجد مجال مفتوحJ محتوى فيI 0و يشملx بحيث من أجل كلx 

J ،من   0f x f x. 

  القول أن 0f x  قيمة حدية محلية ل ـf يعني أن 0f x  .قيمة حدية  محلية عظمى أو صغرى 
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 نقطة انعطاف 
 :يمكن تعين نقطة الانعطاف من خلال احدى الطرق التالية

).المماس 1 )T يخرق المنحنى ( )C عند النقطة ذات الفاصلة
0x. )بيانيا( 

تنعدم عند  f'.الدالة المشتقة2
0x .حسابيا(  و لا تغير من اشارتها( 

عند  تنعدم  f''.المشتقة الثانية3
0x .حسابيا(  و تغير من اشارتها( 

 مركز تناظر 
)أن النقطة  لاثبات ; )a b مركز تناظر للمنحنى( )C  في المعلم ; ,O I J. 

 : 1المقاربة 

aو xمن أجل كل x   وa x منD  :مجموعة تعريف الدالة(  لدينا(( ) ( ) 2f a x f a x b    . 

 : 2المقاربة 

2aو xمن أجل كل x  منD  :2))مجموعة تعريف الدالة(  لدينا ) ( ) 2f a x f x b   . 

: تغير المعلم3المقاربة 
x a X

y b Y

 


 
)كتابة معادلة   )C  في المعلم( ; )i jو اثبات أن الدالة المحصل عليها دالة فردية 

 محور تناظر 
) المستقيملاثبات أن ) : x a  تناظر للمنحنىحور م( )C  في المعلم ; ,O I J. 

 : 1المقاربة 

aو xمن أجل كل x   وa x منD  :مجموعة تعريف الدالة(  لدينا(( ) ( )f a x f a x   . 

 : 2المقاربة 

2aو xمن أجل كل x  منD  :2))مجموعة تعريف الدالة(  لدينا ) ( )f a x f x  . 

 :3المقاربة 

تغير المعلم
x a X

y b Y

 


 
)كتابة معادلة   )C  في المعلم( ; )i jو اثبات أن الدالة المحصل عليها دالة زوجية 

 المناقشة البيانية 
 أنواع المناقشة البيانية :  أفقية ، مائلة ودورانية .

)و Iدالة معرفة على fعدد حقيقي. mليكن  )C   تمثيلها البياني في

 معام متعامد و متجانس.

لها أشكال مختلفة منها:  :الأفقية المناقشة البيانية( )f x m ،

( )f x m ،( ) 1f x m ،( ) 1f x m ،2( )f x m،

( )f x m،( )f x m ،( ) ( )f x f m. 

مثال: لتكن الدالة معرفة على  1  و( )fC   تمثيلها موضح في

  الشكل المقابل:

مع  هي فواصل نقط تقاطع المنحنى حلول المعادلة 

 وعليه: المستقيم ذو المعادلة: 

 . للمعادلة حلين مختلفين من أجل : -

 .أو  للمعادلة حل مضاعف من أجل:  -

 .ليس للمعادلة حلول من اجل: -

 

( )f x m( )fC

y m

   ; 6 2;m    

6m  2m 

 6;2m 
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  استنتاج تمثيل بياني انطلاقا من تمثيل بياني آخر 
f وg   معرفتان على دالتانI و( )fC و( )gC معلم متعامد ومتجانس تمثيلهما البياني على الترتيب في ; ,O I J. 

,a b ،*k  

 

 التمثيل البياني مثال تطبيقي الهندسي التفسير الحالات الممكنة

 
( ) ( )g x f x   

 

 ( )gCهو نظير( )fC  بالنسبة

 لمحور الفواصل .

 
   2( )f x x  

  2( )g x x  

 
 

 
( ) ( )g x f x  

 

( )gCهو نظير( )fC  بالنسبة

 لمحور التراتيب.

 

    ( ) xf x e  

    ( ) xg x e 

 

  

 
( ) ( )g x f x   

 

( )gCهو نظير( )fC بالنسبة  الى

 Oمبدأ المعلم

 

        3( )f x x                                               
3( ) ( )g x x   

 

 

( ) ( )g x f x 

( )gC   لما يقع فوق ينطبق على

 .محور الفواصل 

 ( )gC هو نظير بالنسبة لمحور

الفواصل لما يقع تحت محور 

 .الفواصل

      

     3( )f x x  

      3( )g x x                    

 

 

( ) ( )g x f x 

 

)دالة زوجية و )gC  ينطبق على

( )fC   لماxموجب 

 

 
( ) ln( )f x x                  

( ) ln( )g x x             

 

 

 

 

( ) ( )g x f x  

 

)دالة زوجية و )gC   ينطبق على

( )fC لما   سالب. 

 
2( ) ( 1) 1f x x    
2( ) ( 1) 1g x x    

 

 

 
( ) ( )g x f x a b   

( )gC هو صورة( )fC

 uبالإنسحاب الذي شعاعه 

uحيث:  ai b j  ، أي :a
u

b

 
 
 

 

      2( )f x x 
2( ) ( 1) 1g x x            

1

1
u

 
 
 
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( ) . ( )g x k f x  

)لتكن   , ) ( )fM x y C تكافئ: 

'( , ) ( )gM kx ky C 

 

( ) 1f x x  

      ( ) 3 1g x x  
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 / شعبة تسيير و اقتصاد / الموضوع الأول 2008جوان  بكالوريا

مجال من مجموعة تعريفها.  هي الدالة العددية المعرفة على  كل لتكن  

 لها جدول التغيرات التالي:

 

  و ، حيث   على الشكل  تكتب

 أعداد حقيقية.

 . .احسب 1

 .اعتمادا على جدول التغيرات الدالة :2

 .  و ، عين الأعداد الحقيقية -أ   

 ثم فسرالنتيجة بيانيا. و  عين -ب   

 معللا اجابتك. بدلالة الدالة  و قارن بين صورتي العددين  -ج

تمثيلها البياني في معلم و ليكن  ، ،.نأخد:3

 .متعامد و متجانس 

يقبل   فان المنحنى  أو الى بين أنه عندما يؤول  -أ   

 .معادلته: مستقيما مقاربا

 .بالنسبة للمستقيمأدرس وضعية المنحنى -ب  

 . هي مركز تناظر المنحنى (2;1)أثبت أن النقطة  -ج  

 مع حامل محور الفواصل.عين نقطة تقاطع المنحنى  -د   

عدد حلول عدد حقيقي ، عين بيانيا،حسب قيم العدد الحقيقي.4

 . المعادلة: 

 

 

 

 

f

( )f x( )
1

c
f x ax b

x
  


abc

'( )f x

abc

1

lim ( )
x

f x


1

lim ( )
x

f x




1

2

3

4
f

1a 1b 
1

4
c ( )C

( ; ; )O i j

x( )C

( )1y x 

( )C( )

( )C

( )C



( )f x 

.2 

 
20082019
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 حل مقترح

)'. احسب 1 )f x: 

f  قابلة للاشتقاق على حيث:دالة 

 
2

'( )
( 1)

c
f x a

x
 


 . 

 : cو a ،b ايجاد -. أ2

 :fباستعمال جدول التغيرات دالة 

1 3
' ' 0

2 2

1
1

2

3
3

2

f f

f

f

    
    

   
  

  
 

  
  

 

و منه   

4 0

1
2 1

2

1
2 3

2

a c

a b c

a b c


  



  



  

 

1aو بالتالي:    ،1b   و
1

4
c . 

 حساب -ب

1

lim ( )
x

f x




   و
1

lim ( )
x

f x




  

1xومنه: نستنتج أن المستقيم ذوالمعادلة :    مقارب ل( )Cبجوار 

 يوازي محور  النراتيب. و

 المقارنة: -ج

لدينا:
1 3

2 4
f f
   

   
   

لأن:  
1 3

2 4
  وfمتناقصة على

1
;1

2

 
 
 

. 

 المستقيم المقارب المائل: -. أ3

لدينا: 
1

lim ( ) lim 1 ( 1)
4( 1)x x

f x y x x
x 

 
      

 
 

1
lim 0

4( 1)x x

 
  

 
 

)فان المنحنى  أوالىxو بالتالي: عندما يؤول    )C   يقبل

)مستقيما مقاربا  )  :1معادلتهy x . 

 الو ضعية: -ب 

لدينا:
1

( )
4( 1)

f x y
x

 


 

             1             x   

                           +--           ( )f x y  

( )C فوق ( )  ( )C تحت ( ) الوضعية    

 

)تناظر المنحنى هي مركز (2;1)أثبت أن النقطة  -ج )C: 

 طريقة سحب المحاور.

نضع: 
1

2

x X

y Y

 


 
   و لدينا:   

2و منه:   ( 1)Y f X     

أي:  
1

( 1) 2
4

Y f X X
X

      

بوضع:  
1

( )
4

g X X
X

 
 
 دالة فرديةنجد 

  لأن :   

 .هي مركز تناظر للمنحنى (2;1)النقطة و بالتالي : 

)تعين نقطة تقاطع المنحنى -د    )C.مع حامل محور الفواصل 

 
3

(0)
4

f  ،
3

0
2

f
 

  
 

و   
3

0
2

f
 
   
 

 

 الرسم:

 

 

 

 

 

 

 

 البيانية:. المناقشة 4

 1;1 . للمعادلة حلان 

1    1أو  .للمعادلة حل مضاعف 

   3;1 1;3   .لا توجد حلول للمعادلة 

( )y f x

g

( ) ( )g X g X  

( )fC
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3     3أو  .للمعادلة حل مضاعف 

   ; 3 3;     .للمعادلة حلان 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1/ شعبة تسيير و اقتصاد / الموضوع الأول / التمرين 2009بكالوريا  جوان 

تمثيلها  ،  دالة عددية معرفة على  

 البياني و جدول تغيراتها يعطى كما يلي :

 

 مع تبرير الاجابة:أجب ب: خطأ أو صحيح على كل سؤال مما يلي 

 . مقارب للمنحنى .المستقيم الذى معادلته :1

 تقبل حلا وحيدا. .المعادلة  2

هي : .مجموعة حلول المتراجحة : 3

 

 عندما يكون  يكون : ".في المجال 4

." 

 . تنتمي الى المنحنى .النقطة 5

 زوجية. .الدالة 6

 مقترح حل

 . صحيح 1

 .لأن :

 . خطأ 2

 جدول التغيرات نلاحظ أن .لأن :من 

 . صحيح 3

 و بالتالي   من  من أجل كل   لأن لدينا :  

 . لما 

 . صحيح 4

وبالتالي من أجل  متزايدة تماما على المجال لأن: الدالة

 أي:نجد : 

 . خطأ 5

f   ; 1 1;    ( )fC

2y ( )fC

( ) 0f x 

( ) 0f x 

   ; 1 1;S      

 ; 1 ( 2) ( )f f x 2x  

( 3;1)A ( )fC

f

lim ( ) lim ( ) 2
x x

f x f x
 

 

( ) 2f x x
fD( ) 0f x 

fx D

f ; 1 

2x  ( ) ( 2)f x f ( 2) ( )f f x 
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و بالتالي :  لدينا :   من  لأن: من أجل كل 

 .لا تنتمي الى المنحنىو منه:  النقطة  

 . خطأ 6

غير متناظر  نلاحظ أن  لأن لدينا: 

 .و لكن  ، أي:  بالنسبة للمبدأ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4التمرين  /  / شعبة تسيير واقتصاد / الموضوع الأول 2009بكالوريا  جوان 

كما يلي:    معرفة على المجال  الدالة العددية 

تمثيلها البياني في المستوي المنسوب الى ،  يرمز 

 معلم متعامد و متجانس .   

.(I1 من  بحيث يكون من أجل كل  و ، .عين الأعداد الحقيقية

  : 

 عند أطراف مجالي مجموعة تعريفها.. احسب نهايات2      

يقبل مستقيما مقاربا موازيا لمحور التراتيب يطلب .بين أن المنحنى3      

 تعين معادلته.

مستقيم مقارب مائل  ذا المعادلة .بين أن المستقيم  4      

 . للمنحنى

 .بالنسبة الى . أدرس وضعية5      

.(II1فان:   من   .بين أنه من أجل كل

 .هي الدالة المشتقة للدالة، و

على مجالي مجموعة تعريفها و شكل  .عين اتجاه تغير الدالة 2       

 جدول تغيراتها.

عند النقطة التي فاصلتها للمنحنى  . أكتب معادلة المماس3

. 

.(III1هي مركز تناظر للمنحنى.بين أن النقطة . 

 . و  ،.أرسم كلا من 2     

حتى يكون للمعادلة:   . عين بيانا قيم الوسيط الحقيقي3    

 حلان مختلفان.

و المستقيم  . احسب مساحة الحيز المستوي المحدد بالمنحنى4    

 .و   و المستقيمين  اللذين معادلتاهما:  

 

 

 

x
fD( ) 2f x 

( 3) 1f  ( 3;1)A ( )fC

   ; 1 1;fD      fD

O1 fD 1 fD

f 1 

2 3
( )

1

x
f x

x





( )fC

abcx

 1 ( )
1

c
f x ax b

x
  



f

( )fC

( )1y x 

( )fC

( )fC( )

x 1 

2

( 1)( 3)
'( )

( 1)

x x
f x

x

 



'ff

f

( )D( )fC0

( 1; 2)A  ( )fC

( )D( )( )fC

m

( )f x m

( )fC

( )1x 
2 1x e 
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 مقترح حل

 

.(I1 و ، .تعين الأعداد الحقيقية   : 

 :  من   لدينا: من أجل كل  

                                                           

                                     

 .ومنه:  بالمطابقة نجد: 

 .النهايات:2

  لأن :   

 .و 

 وبالتالي:

 لأن:  

 لأن:  

فان المنحنى  وبما أن :  .3

 .يقبل مستقيما مقاربا موازيا لمحور التراتيب معادلته:

 : . المستقيم مقارب مائل للمنحنى4

 لدينا: 

                      

مستقيم مقارب مائل للمنحنى ذا المعادلة و منه: المستقيم 

. 

 . و . دراسة الوضعية ل 5

                  لدينا: 

 نجد:ندرس اشارة 

 .تحت  المنحنى لما  

  .فوق  المنحنى و لما 

.(II1:المشتقة . 

 :قابلة للاشتقاق على   الدالة

  لدينا: 

            

      ذكير:

 .و منه: 

 .. تعين اتجاه تغير الدالة 2

من اشارة البسط )لأن المقام موجب تماما على *اشارة 

 ( و هي: 

أي:  أو معناه: اما  

 .أو  

 

  متزايدة تماما على المجال:  و عليه : 

  و متناقصة تماما على  المجال :

 (.)لأن:

 *جدول تغيرات:

abc

x 1 ( )
1

c
f x ax b

x
  



( )( 1)

1

ax b x c

x

  




2 ( ) ( )

1

ax a b x b c

x

   




1

0

3

a

a b

b c




 
  

1

1

4

a

b

c




 
 

4
lim ( ) lim 1

1x x
f x x

x 
    



4
lim 0

1x x




lim 1
x

x


  

4
lim ( ) lim 1

1x x
f x x

x 
    



1 1

4
lim ( ) lim 1

1x x

f x x
x 

 

    
1

0

4
lim

1x x






 


1 1

4
lim ( ) lim 1

1x x

f x x
x 

 

    
1

0

4
lim

1x x






 


1

lim ( )
x

f x




 
1

lim ( )
x

f x




 

( )fC1x  

( )fC

 
4

lim ( ) ( 1) lim 1 ( 1)
1x x

f x x x x
x 

      


4
lim

1

0

x x






( )1y x 

( )fC

( )fC( )

4

1x



 ( ) ( ) ( 1)f x y f x x   

4

1x 

1x  ( )fC( )

1x  ( )fC( )

f 1 

2

4
'( ) 1

( 1)
f x

x
 



2

2

( 1) 4

( 1)

x

x

 




2 2 ( )( )a b a b a b   

2

( 1)( 3)

( 1)

x x

x

 


 2

( 1 2)( 1 2)
'( )

( 1)

x x
f x

x

   




f

'( )f x 1 
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 .و  

 :عند النقطة التي فاصلتهاللمنحنى. معادلة المماس3

 حيث:  تكتب من الشكل: 

 .اذن:   و 

.(III1هي مركز تناظر للمنحنى   . تبيان أن النقطة . 

 :1الطريقة

معناه :من جل كل  مركز تناظر للمنحنى تذكير: 

 . ، لدينا:  من ،

 

 و بالتالي:و  لدينا: 

:  

 .و منه:  

أي :  و 

. 

 .هي مركز تناظر للمنحنى   و بالتالي النقطة 

 : سحب المحاور. 2الطريقة

   و لدينا:  نضع: 

  و منه:  

  أي: 

 دالة فرديةنجد بوضع:  

  لأن :   

 .هي مركز تناظر للمنحنى بالتالي : النقطةو  

 . و ، . رسم2

 

مع  هي فواصل نقط تقاطع المنحنى حلول المعادلة 

 وعليه: المستقيم ذو المعادلة: 

 . للمعادلة حلين مختلفين من أجل : -

 .أو  للمعادلة حل مضاعف من أجل:  -

 .ليس للمعادلة حلول من اجل: -

 . حساب المساحة:4

   و منه: 
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 / شعبة تسيير م اقتصاد / الموضوع الأول 2010لوريا  جوان بكا

 كما يلي:   دالة عددية  معرفة على 

                            

تمثيلها البياني في المستوي المنسوب الى معلم متعامد و متجانس و

   . 

،  حيثفان : من  .بين أنه من أجل كل 1

 عدد حقيقي يطلب تعيينه  

 .و  ، .احسب 2

 فان : من  بين أنه من أجل كل  -.أ3

 .،استنتج تغير الدالة   

 .شكل جدول تغيرات الدالة -ب   

يقبل مستقيمين مقاربين أحدهما مائل ، يطلب  .أثبت أن المنحنى4

 تعين معدلتهما..

 .  في النقطة ذات الفاصلة مماس المنحنى .أوجد معادلة ل 5

 .و المنحنى .أرسم  6

و التي تحقق   على المجالللدالة    عين الدالة الأصلية-.أ7

:  . 

و محور  أحسب مساحة الحيز المستوي المحدد بالمنحنى -ب  

 .والفواصل و المستقيمين

 

 

 

 

 

 

 

 مقترححل 

 كما يلي:   دالة عددية  معرفة على 

        

 :. تعيين 1

                

 .وبالتالي:  أي:  

 . النهايات:2

 . 

. 

 

 :قابلة للاشتقاق علىالدالة  -. أ3

  لدينا: 

لأن:    و منه: 

 

و  ومنه:  مميزه:  لدينا:

 و بالتالي: من اشارة: بالتالي: اشارة 

                        

           +  0      --         +   

  متزايدة تماما على  

 . متناقصة تماما على  

 .جدول تغيرات الدالة  -ب
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 . المستقيمين المقاربين:4

معادلة  مستقيم مقارب يوازي فان:  بما أن : 

 محور التراتيب.

و و نلاحظ أن :

 

 .ومعادلة  مستقيم مقارب مائل بجوار  و منه:

 :. معادلة المماس5

 .المعادلة هي: 

 و  حيث: 

في النقطة ذات الفاصلة  للمنحنى و بالتالي: معادلة المماس

 .هي:

  ()أنظر أسفله  .و المنحنى . رسم  6

 :للدالة تعين الدالة الأصلية-. أ7

 عدد حقيقي. ، حيث 

 معناه:  تحقق : لدينا

 .اذن: 

 المساحة:-ب   

  و الدالة  سالبة على المجال  تذكير: * اذا كانت 

و  ،و المستقيمات :   المساحة المحددة بالمنحنى

 فان:  

       * 

   

 .و بالتالي:  و منه: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0
lim ( )
x

f x  0x 

2

4
lim ( ) ( 5) lim 0
x x

f x x
x 

 
    

 

2

4
lim ( ) ( 5) lim 0
x x

f x x
x 

 
    

 

5y x 

( )

( ) : '(1)( 1) (1)y f x f   

(1) 0f '(1) 7f  

( )( )fC1

7 7y x  

( )( )fC

Ff

21 1
( ) 5 4

2
F x x x c

x
   c

F(2) 10F  0c 

21 1
( ) 5 4

2
F x x x

x
  

f ;a bS

( ) fCx ax b

0y ( )
b

a
S f x dx 

( ) ( ) ( )
b b a

a a b
f x dx f x dx f x dx     

2 2 1

1 1 2
( ) ( ) ( )S f x dx f x dx f x dx      

(1) (2)S F F 
3

2
S ua



 20082019   5min Maths  
20 

 / شعبة تسيير م اقتصاد / الموضوع الثاني2011جوان بكالوريا  

  المعرفة على مجموعة الأعداد الحقيقية نعتبر الدالة العددية

  بالعبارة: 

تمثيلها البياني في المستوي المنسوب الى معلم متعامد و متجانس 

   . 

 على محور التراتيب. على محور الفواصل  و  الوحدة  

 . لدينا :.بين أنه من أجل كل عدد حقيقي 1

يقبل  ، و استنتج أنعند وعند .احسب نهاية الدالة 2

 لة له.مستقيما مقاربا يطلب تعين معاد

 .الذي معادلته: بالنسبة الى  . أدرس وضعية 3

 ثم شكل جدول تغيراتها.و استنتج اتجاه تغير الدالة .احسب4

و      لدينا :. بين أنه من أجل كل عدد حقيقي 5

 يقبل مركز تناظر يطلب تعيينه.استنتج أن 

 .و المنحنى أرسم المستقيم   .6

 .  احسب التكامل: -.أ7

احسب بالسنتيمتر مربع مساحة الحيز من المستوي المحدد بالمنحنى  و -ب   

 . و  محور الفاصل و المستقيمين اللذين معادلتهما:

 

 

 

 

 

 

 

 

 

 

 مقترح حل

 . بالعبارة:   المعرفة على الدالة العددية

 . التبيان :1

لدينا: من أجل كل عدد حقيقي 

 

                    

 النهايات: 

. 

 .و بالتالي: 

،  يوازي محور  و معادلة مستقيم مقارب بجواراذن: 

 الفواصل.

 . الوضعية:3

هي من اشارة:  اشارة الفرق  لدينا:

 معناه: 

 .فوق المنحنى  لما 

 .تحت   المنحنى  ولما 

 . يقطع  المنحنى في النقطة 

 :. حساب4

 :قابلة للاشتقاق على   الدالة

  لدينا:

 و منه: 

 .من اشارة :  *اشارة  
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 .أو اذن :  أي:  و منه: 

 

 

  متزايدة تماما على المجال: و عليه :

 . و متناقصة تماما على  المجال :

 *جدول تغيرات:

 

 :حقيقي . لدينا من أجل كل عدد 5

  

     

 .هي مركز تناظرنستنتج أن النقطة 

 

 نقطة انعطاف أيضا. فان  ملاحظة: بما أن 

 

 .و المنحنى . رسم المستقيم 6

 

 

 حساب التكامل: -أ.7

   . 

 المساحة:-ب

    

  و منه: 

 .أي: 

 

 

 

 

 

 

 

 

 

. 
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 الموضوع الثاني/ شعبة تسيير م اقتصاد / 2012بكالوريا  جوان 

 بالعبارة:  هي الدالة العددية المعرفة على المجال  

                 

 .بقيم أكبر وعند عند .احسب نهايتي 1 

 : من المجال     بين أنه من أجل كل -.أ2

                  

،ثم شكل جدول على المجال استنتج اتجاه تغير الدالة-ب   

 تغيراتها.

على المجال     للدالة  جد الدالة الأصلية-ج   

 .و التي تنعدم من أجل 

آلات على الأقل   .تنتج احدى شركات تركيب آلات الغسيل خلال أسبوع 3

ألة   لإنتاج   ألة على الأكثر. تنمذج الكلفة الهامشية  و 

 أي : من أجل كل  بالدالة  اضافية للشركة على المجال 

 . ، من المجال 

ما هو عدد الآلات التي يجب أن تنتجها الشركة خلال أسبوع لكي تكون  -أ   

 التكلفة الهامشية أقل ما يمكن؟.

 للكلفة الإجمالية لإنتاج آلة و نذكر نرمز بالرمز -ب   

 أن :  

  ، علما أن  الكلفة الإجمالية لإنتاج  جد عبارة الكلفة الإجمالية

آلة  ، ثم استنتج قيمة الكلفة  الإجمالية  لإنتاج هي  آلات الأولى

 الأولى.

 

 

 

 

 

 

 

 مقترح حل

 كمايلي :                دالة عددية معرفة على   

 . النهايات:  1

 

 . 

 المشتقة : -. أ2

 :قابلة للاشتقاق على  الدالة

           

 و منه : 

 اتجاه التغير:  -ب

: نلاحظ أن

 

، و منه : اشارة من   أجل كل لدينا من

 .من اشارة:  

 و  و بالتالي: يوجد حلان هما:  نجد:

 حل مرفوض لأنه لا ينتمي الى مجموعة تعريف  )

 (.الدالة

 

 

 .و متناقصة تماما على   و منه: متزايدة تماما على

 جدول تغيرات:*
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 :على المجال  للدالة  الدالة الأصلية -ج

  لدينا: 

 عدد حقيقي. حيث 

 أي:  تنعدم من أجل  نعلم أن 

 . و بالتالي: 

 عدد الآلات -. أ3

الكلفة الهامشية أقل ما يمكن أي نبحث عن القيمة الحدية الصغرى للدالة 

. 

لها قيمة الحدية الصغرى تبلغها من أجل: من جدول التغيرات نجد أن  

 . 

 .و بالتالي عدد الآلات هو 

 الكلفة الإجمالية -ب

لأن: هي الدالة الأصلية للدالةومنه : نعلم أن:

. 

  أذن:

 ،أي:

 عدد حقيقي.حيث: 

يعني:  آلات الأولى هي   علما أن  الكلفة الإجمالية لإنتاج 

  و منه : 

 و بالتالي:  

هي: عبارة الكلفة الإجمالية

. 

آلة الأولى:  استنتج قيمة الكلفة  الإجمالية  لإنتاج 

 . 

 

 

 

 

 ول تسيير م اقتصاد / الموضوع الأ  / شعبة2019بكالوريا  جوان 

I) g3:   بـ الدالة العددية المعرّفة على( ) 2g x x x      و

 تمثيلها البياني كما هومبيّن في الشكل .

 

)و استنتج إشارة g(1)بقراءة بيانية عيّن     )g xعلى  . 

 

II)  نعتبر الدالة العدديةfالمعرّفة على   :  بـ
2

1
( )

x
f x x

x


   

  fC تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و

المتجانس , ;O i j  

limأحسب  -أ  (1 ( )
x

f x


limو   ( )
x

f x


 . 

أحسب  -بـ 
0

lim ( )
x

f x


 .  و فسّر النتيجة  بيانيا 

غير معدوم:  xبيّن أنه من أجل كل  (2
 

3
( )

g x
f x

x
  . 

ل جدول تغيراتها . fاستنتج إتجاه تغير الدالة - 
ّ
  ، ثم شك

بيّن أن المستقيم -أ   (3  ذا  المعادلةy xمائل للمنحنى مقارب

 fC  . 

أدرس الوضع النسبي للمنحنى  -بـ  fC  و المستقيم  . 

بيّن أن المعادلة (4  0f    تقبل حلا وحيدافي المجال

 1,4; 1,3   . 

أرسم  (5  ثم المنحنى fC . 

مساحة الحيّز المستوي المحدد بالمنحنى  Aأحسب (6 fC   و

yالمستقيمات التي معادلاتها :  x ،1x   3وx . 

 

 

 حل مقترح

I) g3:  بـ فة علىلدالة العددية المعر  ا( ) 2g x x x        

H
1

:
1

h x
x 

 1; 

 
1

( ) ( ) ln 1
1

H x h x dx dx x c
x

    
 

c

H0x (0) 0H 

0c 

f

f

15x 

15

'( ) ( )mC x C xCf

( ) ( )mC x f x

31 57600
( ) ( ) ( ) 100

3 1
C x f x dx f x x dx

x
    

 

41
( ) 100 57600ln( 1)

12
C x x x x k    

k

540000

(5) 4000C 
473375

57600ln 6
12

k  

( )C x

41 1 473375
( ) 100 57600ln

12 6 12

x
C x x x

 
    

 

15

(15) 101662,43C DA
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  1 0g  . 

 إشارة( )g x على . 

)انطلاقا من التمثيل البياني المعطى نلخص جدول اشارة  )g x: 

                 1                 x  

                                  +- ( )g x 

 

II) f فة علىالدالة  كما يلي  : المعر 
2

1
( )

x
f x x

x


   

 -أ  (1

 
3 3

2 2 2

1 1
lim ( ) lim lim lim lim

x x x x x

x x x x
f x x x

x x x    

      
          

     

 . 

 
3 3

2 2 2

1 1
lim ( ) lim lim lim lim

x x x x x

x x x x
f x x x

x x x    

      
          

     

 

 -بـ 
3

2 20 0 0

1 1
lim ( ) lim lim
x x x

x x x
f x x

x x  

    
      

   

 

0xالمستقيم ذو المعادلةالتفسير البياني:    عمودي  مقارب 

للمنحنى fC . 

: معدومغير  xأنه من أجل كل تبيان  (2
 

3
( )

g x
f x

x
  . 

غير  xمن أجل كلو   قابلة للإشتقاق على fالدالة               

 :معدوم 

 

 

 

 

 

2

2
2

2 2 2

4 4

34 2

4 4

3

1 2 1
( ) 1 .

2 2 2
1 1

22

x x x
f x

x

x x x x x

x x

x x xx x x

x x

g x

x

  
  

   
   

  
 



 

 : fر الدالةإتجاه تغي   - 

) إشارة لندرس    )f x : 

 

 

تبيان أن المستقيم -أ .3  ذا  المعادلةy xمائل للمنحنى مقارب

 fC  . 

لدينا : 
2 2

1 1
( ) ( )

x x
f x y f x x

x x

  
      

و   

  2 2

1 1 1
lim ( ) lim 0

x x

x
f x x

x x x 

     
       

   

   و     2

1 1
lim ( ) lim 0

x x
f x x

x x 

 
    

 
 

المستقيمو منه     المعادلة و ذy xللمنحنى مائل مقارب

 fC . 

الوضع النسبي للمنحنى  ةسادر -بـ  fC  و المستقيم  : 

  
2 2

1 1
( )

x x
f x x

x x

  
      بالتالي إشارة و

( )f x x 1من إشارةx   : 

 

تبيان أن المعادلة.4  0f x    تقبل حلا وحيدا في المجال

 1,4; 1,3   : 

مستمرة  و متزايدة تماما على المجال  fالدالة   ;0  و  

   1,4; 1,3 ;0      و  
 

 

1.4 0,17

1.3 0,06

f

f

  


 

 

أي    1,4 1,3 0f f     و منه حسب مبرهنة القيم

المتوسطة المعادلة   0f x   تقبل حلا وحيدا ،بحيث

1.4 1.3    
 الرسم :.5
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مساحة الحيز المستوي المحدد بالمنحنى Aباحس (1

 fC 1ها : تمعادلا تيال و المستقيماتx  ،

3x   و  y x.   

 
3

1

33 3

2 2

1 1 1

( )

1 1 1 1
ln

1 2
ln 3 1 ln 3

3 3

A x f x dx

x
dx dx x

x x x x

 

     
         

     

    



  
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1. 

ـــة علــــى  نعــتـــبر الـدالــة  ــ ــــــــ :   المـــعرفـ  .     بــ

 .تمثيلها البياني في المستوي المنسوب إلى معلم متعامد و متجانس  

ـــة1 ـــــدالـ ـــــد  .أحـــســب النــــــهايـات للـ  .و عنـ

 ، ثـم شـكـــــل جــدول تغــــــــيراتـــــــها . .أدرس اتــجــــاه تغــــــير الـــدالـة 2

ـــــقق أنـــــه مــن أجــــل كـــل .3  فــــــإن:    مــــن  تحـــ

ـــــاطـــع 4 ـــين نقـــــــــط تقـ  مــع حاملي مـحـــــوري الإحـــــــداثـــيات  .عــــ

ــــــطة انعــطاف ، يطــلب تعيين إحداثيــــيها  .أثبــت أن المنــحنى 5  يقــبل نقـ

 . 0في النقـطة ذات الفاصــلة  ممـاس المنحنى  ــــتقيم .عيــن معادلة للمس6

ــــلم  و .أنشـــــــئ 7 ـــس المعـ  .فـــي نفـ

2.  

.I ب: الدالة العددية المعرفة على لتكن  

 .على أدرس تغيرات -.أ1

 .  تقبل حلا وحيدا  برهن أن المعدلة -.أ2

 .بتقريب أعط حصرا للعدد ثم واحسب-ب  

 .،اشارة.عين حسب قيم 3

.II    معرفة ب:دالة عددية للمتغير الحقيقي    

 . من اشارة  عدد حقيقي غير معدوم اشارة .برهن أنه من أجل كل 1

f  3 2 1f x x x x   

( )fC , ,o i j

f

f

x    
2

1 1f x x x  

( )fC

( )fC

 T( )fC

( )fC T

g
3 2( ) 2 1g x x x  

g

( ) 0g x 

1

2
g
 
 
 

(1)g110

x( )g x

fx21 1
( )

3
f x x x

x

 
   

 

x'( )f x( )g x

3 



27 5min Maths  

3.  

 .   دالةأدرس تغيرات  .2

 .  و استنتج حصرا ل .برهن أن :3

  (. )وحدة الطول تمثيلها البياني في معلم متعامد و متجانس  .نسمي 4

 فاصلتها  نقطة منو فاصلتها نقطة منلتكن

 . عند تحقق أن المستقيم مماس ل-أ

 بالنسبة لهذا المماس.ثم أدرس وضعية عند للمنحنى   عين معادلة المماس-ب 

 (. كقيمة تقريبية للعدد   )نأخد  أرسم -ج 

3. 

   بالعبارة معرفة على  نعتبر الدالة 

 ..أدرس تغيرات الدالة 1

 .:  من كل  بحيث من أجل و ،،عين الأعداد الحقيقية  .2

 .يقبل مستقيمين مقاربين أحدهما مائل نسميه.استنتج أن3

 .بالنسبة للمستقيم . أدرس وضعية المنحنى4

 .سعته  يطلب تعيين حصرا ل  في نقطة فاصلتها  يقطع  .بين أن المنحنى5

 ..أنش ئ 6

 . دالة معرفة على  .نضع: 7

 دالة زوجية ، فسر هذه النتيجة بيانيا. أثبت أن -أ    

 في نفس المعلم السابق.ثم انش ئ  انطلاقا من  منحنى الدالةاشرح كيف نستطيع أن ننش ئ  -ب   
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    معرفة  ب:    عددية للمتغير الحقيقي  دالة دالةال

 .تمثيلها البياني في معلم متعامد و متجانس  و

 .  ، :  من كل  بحيث من أجلو،عين الأعداد الحقيقية  .1

 .ماذا تستنتج بيانيا؟.على.احسب النهايات ل2

 .ثم ضع جدول تغيرات الدالة  على.أدرس اتجاه  تغير الدالة 3

 ، ماذا تستنتج ؟.و.احسب 4

 .  الذي معادلته: يكون المماس عندها موازي للمستقيم  .عين نقط من5

 ..أرسم 6

 تمثيلها البياني. و ، ب:   دالة عددية معرفة على  . 7

 ماذا تستنتج بيانيا؟.دالة زوجية، أثبت أن -أ   

 بدون رمز القيمة المطلقة. أكتب-ب   

 .أرسم-ج   

5. 

 ب المعرفة على  fنعتبر الدالة 

 .الوحدة في المستوي المنسوب إلى معلم متعامد و متجانس fالمنحني الممثل للدالة  

 : بحيث من أجل كل   cو a  ،b( عين الأعداد الحقيقية 1

 عند حدود مجموعة التعريف.    f( احسب نهايات الدالة  2

 .( استنتج معادلات للمستقيمات المقاربة للمنحني3

4 )D إلى بالنسبة  .ادرس وضعيةمستقيم معادلتهD. 

fx
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 .  fو استنتج  تغيرات الدالة ( احسب 4

 . fشكل جدول تغيرات  -  

 .ماذا يمكن أن تستنتج؟                              :( بين أنه من أجل كل5

 مع محور الفواصل. ( عين إحداثيات نقط تقاطع المنحني6

 و المستقيمات المقاربة. (أنش ئ المنحني7

8 )U بـ : متتالية معرفة من اجل كل عدد طبيعي            

 .احسب المجموع-أ

 .احسب  -ب

6. 

في المستوي المنسوب  fالمنحني الممثل للدالة     كما يلي:      المعرفة على f تكن الدالة العددية 

 .إلى معلم متعامد

 عند حدود مجموعة التعريف.    f( أ( احسب نهايات الدالة  1

 شكل جدول التغيرات. و   fب( ادرس تغيرات الدالة 

   :بحيث من أجل كل  d و  a  ،b  ،c( أ( عين الأعداد الحقيقية 2

 كمستقيم مقارب. الذي معادلته  Dيقبل المستقيم ب( استنتج أن 

 . Dبالنسبة إلى  ج( حدد وضعية 

 . بتقريب .استنتج حصرا لـفي المجال  تقبل حلا واحدا  ( بين أن المعادلة 3

 على محور التراتيب ( على محور الفواصل و .)الوحدةفي المعلم و  D( أنش ئ 4

 .حلول المعادلة  عدد m(  استنتج بيانيا و حسب قيم الوسيط الحقيقي 5

7. 

 معرفة و قابلة  لدالة الشكل الموالي هو التمثيل البياني

 'f x

 2; 1     3f x f x  
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 حيث:في معلم متعامد و متجانس  للاشتقاق على المجال

 .و يشمل النقطة  بمبدأ المعلم  *يمر

 مماسا أفقيا. و يقبل المستقيم التي فاصلتها في النقطة*يمر

 . كمماس عند النقطة 

 

 

 

 

 

 

 

 

 

 ..ماهو معامل توجيه المستقيم1

 ..عين اتجاه تغير الدالة 2

 . المتراجحة: .حل بيانيا في المجال 3

  أعداد حقيقية.و ،،حيث :  .نفرض أن :   4

 .و   ،  ،بين أن: 

8. 

.I  حيث:     كثير حدود للمتغير الحقيقي  ليكن    

 ثم شكل جدول تغيراتها . أدرس تغيرات الدالة  .1

 . سعته  .عين حصرا ل  على المجالتقبل حلا وحيداتقبل  .بين ان المعادلة 2

 .على .استنتج حسب قيم اشارة 3

 3;3( ; ; )O i j

( )CO( 3;9)A 

( )CB1( )OA

O

( )OA

f

 3;3( ) 2f x  

3 2( )f x ax bx cx d   abcd
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a 1b 3c  0d 

Px
3 2( ) 2 3 1P x x x  

P

( ) 0P x  1;110
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3.  

.II  تمثيلها البياني في معلم متعامد و متجانس  و   ب:   دالة عددية معرفة على. 

 .ماذا تستنتج بيانيا؟..عين النهايات للدالة 1

 :من  .بين أن من أجل كل2

 ثم شكل جدول تغيراتها. .استنتج اتجاه تغير الدالة3

 .ثم عين حصرا للعدد .بين أن: 4

 .عند النقطة ذات الفاصلة المماس ل. عين معادلة 5

  :   من.تحقق انه من أجل كل6

 .بالنسبة للمماس  .أدرس وضعية المنحنى7

 .و .أرسم8

9. 

        بـ:    المعرفة على  fنعتبر الدالة 

 .الوحدةهو التمثيل البياني لها في معلم متعامد و متجانس 

 ، شكل جدول التغيرات . f.درس تغيرات 1

 لا يقطع محور الفواصل.، استنتج أن للمنحنيحل المعادلة  -. أ2

 .عدد حلول المعادلة  mحسب جدول التغيرات ناقش حسب قيم اعدد الحقيقي  -ب

 . 1و  عند النقطتين اللتين فاصلتاهما  للمنحني  و  عين معادلة لكل من  المماسين -ج

 .و المنحني  ،  . أنش ئ المماسين3
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