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@@@ضع تخمینا حول اتجاه تغير و تقارب هذه المتتالیة . بــ)-  أ)- مثل �لى �امل محور الفواصل الحدود الأربعة الأولى لهذه المتتالیة .
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)المتتالیة  )- لتكن2 )nV المعرفة  �لى   : بـ
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)   أ)- بين أن المتتالیة  )nVمتتالیة حسابیةیطلب تعیين أساسهاr . و�دها الأول 
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1 2 .........n nP U U U= × × × 
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I �لتكن ا�ا -(f المعرفة �لى: بــ  
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 ، ثم شكل �دول تغيراتها. f، اس�تنتج اتجاه تغير ا�ا�  

)- أكتب معاد� المماس )4 )Tللمنحنى ( )fC �0 عند النقطة ذات الفاص 1x = )- أ�شئ  )5.  − )T و ( )fC  . 

) �دد �لول المعاد� : m- �قش بیانیا حسب قيم الوس�یط الحقيقي )6 ) ( ) ( )f x f m x f m= +.  

7(  -λ وس�یط حقيقي موجب تماما ، أحسب λ( )S مسا�ة الحيز المس�توي المحدد بــ ( )fC               :            ، والمس�تق�ت التي معادلاتها 
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II �لتكن ا�ا -(g المعرفة �لى : 1 بــ( ) ( ) xg x f x e − −= )، ........، g ،''g'.  �سمي    + )ng   ا�وال المش�تقة  
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0  �ير معدوم نضع  :n)- من أ�ل كل �دد طبیعي2 0 0( )'( ) ''( ) ......... ( )n
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I �لتكن ا�ا -(f 0المعرفة �لى ا�ال, ,D e e   = ∪ +∞   : كما یلي 
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( )fC تمثیلها البیاني في معلم متعامد و مت�ا�س( ), ,O i j
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  ، ماذا �س�تنتج ؟ فسر هذه النتي�ة بیانیا . 
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)أثبت أن   بـــ)- )fCیقبل مس�تق� مقار� مائلا ( y معادلته :  ∆( x= بجوار .  ثم ادرس وضعیته �لنس�بة للمنحنى( )fC     

,0  من x)- �رهن أنه من أ�ل كل3   ,e e   ∪ +∞    : 
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,0 �لىf   - اس�تنتج اتجاه تغير ا�ا� ,e e   ∪ +∞    �شكل �دول تغيرات ا�ا  ،f  لى�D . 

) أكتب معاد� المماسأ)-)- 4 )T للمنحنى ( )fC �0عند النقطة ذات الفاص 1x =
 
. 

,0 المعرفة �لى ا�الhبـــ)- لتكن ا�ا�       +∞  : 1 بـ( )h x xLnx x= − + 

)،  اس�تنتج إشارة  ثم شكل �دول تغيراتهاh- ادرس تغيرات ا�ا�      )h x0 �لى ا�ال, +∞ .  

)      -  ادرس وضعیة المماس  )Tلنس�بة للمنحنى�( )fCأ�شئ    .   ( )T ،( )و∆( )fC  . 

II -(1 : لیكن التكاملين  -( ( )1
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1J x xLnx dx= + −∫     

   . J ، ثم اس�تنتج القيمة المضبوطة لـ   I        �س�تعمال التكامل �لتجزئة أحسب 

)- أ)- �رهن أنه إذا كان 2      
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∈  
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2 فإن :     1( )x f x x xLnx≤ ≤ + −.  

S بـــ)- �سمي         ) مسا�ة الحيز المس�توي المحدد بـ   )fC : و محور الفواصل و المس�تق�ن التي معاد�تهما 
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              = × × ×                      

         = × = × = ×             




 
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   +
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03)- أ)-  4 1 10 ≡  ،  13 3 10 ≡   ، 23 9 10 ≡   ، 33 7 10 ≡  ،  43 1 10 ≡  ).................................0.5(ن 

k ∈   4 3k +      4 2k +   4 1k +    4k n = 
10         7       9       3      1 3n ≡ 
2023بــ)-  3 10 ≡     
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2 3 4 6
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299 9 10
299 3 10
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299 3 10( )

n n

n n

+ +

+ + +

  ≡  
 ≡    ≡  

  ≡  

2 ومنه :  32 299 2 9 10( )n+  − × ≡ − ×      : 2، أي أن 32 299 2 10n+  − × ≡   

( )1444 1444 1444 4 361 3611 3 3 ( )n n
nS + ++ = )  ومنه := )1444

1 1 10nS  + ≡  .  



 1 2 3 10( )nA  ≡ + −   : 0 أي أن 10nA  ≡  .  ومنه : �قي قسمة nA ن)0.5 .................................( .0 هو 10 �لى 

29)- أ)-5 3n n=  ،7 3 10 ≡ −  ،  2 1 2 17 3 10( )n n+ +  ≡ −  ،2 1 2 17 3 10n n+ +  ≡ −  )2  لأن 1n     ومنه :  ).فردي +

( ) ( )
( ) ( )

2 12 1 2
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3 4 9 7 3 4 3 10

3 4 9 7 3 3 4 3 10

3 nn n n

n n n

n n

n n
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+

+ × + ≡ +

+ × + ≡ + −

 −  
  

 أي أن :   

                       ( ) ( )2 1 23 4 9 7 3 3 1 10n n nn n+   + × + ≡  ن)0.5..................................................( +

) بــ)-   ) 2 13 4 9 7n nn ++ × )  معناه :10مضاعف للعدد  + ) 2 13 4 9 7 0 10n nn +   + × +   و منه :   ≡

      ( )23 03 1 10n n  ≡  + ، ( ) 03 1 10n  ≡  + 10  ( لأن ليس ضاعف للعدد  (  

     3 1 10n  ≡ −    ،3 9 10n  ≡    ،3 10n  ≡    : و منه( )10 3n k k= + ∈ . )............................. 0.5(ن  

6-(  
( )

2 3 4 5 6222 3 3 2 3 2 3 2 3 3
742 702 0 3

N x xxx x x x x
N x x

= = + + + × + × + + × +

= + ≤ 

    

                                      
( )

34 3 3 7 49 4 7
49 1393 0 7

N x y y x
N y x y

= = + × + + ×

= + + ≤ 

 و منه :  

742 702 49 1393x y x+ = + +  ،693 691x y− =  ،0x =: 691y = 2xمرفوض . − =  :695y مرفوض  =

1x =  ،2y =      -    2 49 1393 1444N = + +    ن)0.25ن)(0.75......................................................(=
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)تمثیل الأربع �دود الأولى للمتتالیة)- أ)- 1 )nU : )..................................................................................0.25(ن                          

 

)بــ)-  )nU دود متزایدة تماما �لى� . ن)0.25 ............................................................................( ، ومتقاربة 



 :0من nجـ)-البرهان �لتراجع أنه من أ�ل كل  3nU≤ ≤  .    0 3( )................ nP n U≤ ≤    

0n  من أ�ل =  : 0 0U = ، 00 3U≤ )0ومنه :  ≥ )P محققة . 

)نفرض صحة  )P n:  00 3U≤ )1و نبرهن صحة ≥ )P n + :10 3nU +≤ ≤. 

00�ینا :  3U≤ 0 تماما �لى ا�الfبما أن ا�ا� متزایدة ، ≥ 3, 
  

0 فإن :  3( ) ( ) ( )nf f U f≤ ≤                                                                                                                    

1

60 3
2 nU +≤ ≤ ≤ 

)1ومنه :  )P n  : 0 من n من أ�ل كل محققة .+ 3nU≤  ن)0.5................................................................(≥

  : من nمن أ�ل كل د)- 
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U U U U
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U U U U U U

U
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: من nمن أ�ل كل 
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3 6 6
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n n

n n n

U
U U

U U U
+

−
− = ≥

+ − −
) ومنه :  )nUمتزایدة تماما �لى).0.25)(ن)0.25ن  

( )nU متزایدة تماما �لى  : ن)0.25 .......................................................(فهيي متقاربة . 3 و محدودة من الأ�لى بـ 

 lim nn
U l

→+∞
=  ،( )3 0 3

6 ²
l l

l
= ≤ ≤

−
 ،6 3²l l− =، ( )6 9² ²l l− = ،( )22 3 0l −  ومنه : =

    3l 3l  أو= = 0 مرفوضة لأن : − 3l≤  ن)0.25...................................................................(.≥

 :  من nمن أ�ل كل )- أ)- 2
2 2

1
1 2

1
2

9
6

93 3
6

n n
n n n n

n

n

U U
V V V V

U
U

+
+

+

−
− = − = −

− −
−

2 2 2

1 2 2 2 2 2

39 3
9 3 3 3 3 3

n n n
n n

n n n n n

U U U
V V

U U U U U+

−
− = − = − =

− − − − − 1 1n nV V+ −  ومنه :   =

  ( )nV 1 متتالیة حسابیة أساسهاr 0 ، و�دها الأول= 0V  ن)0.25ن) (0.25ن)(0.25......................................(=

 : nV من n- من أ�ل كل  بــ) n= )......................................................................................0.25(ن 



  : من nمن أ�ل كل 
2
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n

n
n

U
V

U
=

−
 ،   ( )2 23n n nV U U− =       ،2 23 n n n nV V U U− × = ( )2 1 3n n nU V V+ =  
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