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دالتان  Gو Fباستعمال طريقتين مختلفتين بين أن   
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 الأول:الجزء     
باستعمال المنحني .1 C  ضع تخمينا حول اتجاه

 تغير
على المجال fالدالة  0;.  

 أثبت صحة التخمين.  

استنتج إشارة  .2 f x على المجال 0; .
 كيف

 يترجم ذلك على التمثيل البياني المقابل ؟ 

عمال المنحنيباست .3 C ضع تخمينا حول نهاية
f 0عند. 

 أثبت صحة التخمين.  
بين أن المنحني .4 C يقبل مستقيما مقاربا مائلا

  .يطلب تعيين معادلة له 

 الجزء الثاني    
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درس إشارة ا -ج 'f x و شكل جدول تغيرات f 
بين أن المعادلة .3  0f x  تقبل حلا واحدا  

2,5 حيث 2    
yالذي معادلته Dبين أن المستقيم  .4 x  

مقارب للمنحني C عند و عند. 
و المنحني  Dأرسم . 5 C ة الممثل للدالf  في

معلم متعامد ; ,O i j:2،الوحدةcm  على محور
 على محور التراتيب. 1cmالفواصل و
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تنتميان إلى المنحني C. 
لحيز المستوي  S المساحة 2cmاحسب بـ -ج

المحدد بالمنحني C  و القطعة AB. 
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