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,1ن) 5) بينهما). المحصور الضلع و (زاويتان
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)

: لدينا 1

= 180◦ − (80◦ + 65◦) = 180◦ − 145◦ = 35◦

,0ن) 75)
,0ن) 75) الشكل. 2

فالمثلثان
KLM و ABC
متقايسان

إذن

 K̂ = Â = 35◦
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(BE) // (CE) فإن (CD) ⊥ (AD) و (BE) ⊥ (AD) أن بما 1

,0ن) 75) متوازيان). إذن المستقيم نفس (يعامدان

(BE) // (CD) و [AC] منتصف B : لدينا ، ACD المثلث في 2

نستنتج المنتصفين مستقيم لنظرية العكسية النظرية فحسب
,1ن) 5) .BE =

1

2
CD و [AD] منتصف E أن

.CD = 2× BE = 2× 1m = 2m منه BE =
1

2
CD إذن لدينا 3

. 2m هو الأطفال إليه يصل أن يمكن ارتفاع أقصى إذن
,0ن) 75)
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ن) 8) الإدماجية الوضعية

(1ن) . 600m2 تساوي مساحته إذن D في قائم ACD المثلث 1

S1 =
AD × CD

2
=

30× 40

2
= 600

بحيث F ∈ (CA) و E ∈ (CD) : لدينا ، ACD المثلث في (ا) 2

نستنتج (طالس) الأطوال تناسبية خاصية فحسب (EF) // (DA)

منه 32

40
=

CF
CA =

EF
30
أي CE

CD =
CF
CA =

EF
DA أن

(2ن) . EF = 24m إذن .EF =
30× 32

40
= 24

(إذا (EF) ⊥ (CD) إذن (CD) ⊥ (AD) و (EF) // (AD) أن نعلم (ب)
الآخر). يعامد فإنه متوازيين مستقيمين أحد مستقيم عامد

,0ن) 75)
. 384m2 تساوي مساحته بالتالي و E في قائم CEF المثلث (ج)

,0ن) 75) S2 =
CE × EF

2
=

32× 24

2
= 384

. 216m2 تساوي الخضراء المساحة منه
,0ن) 5) S = S1 − S2 = 600− 384 = 216
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منه 32

40
=

CF
CA =

EF
30
أي CE

CD =
CF
CA =

EF
DA أن

(2ن) . EF = 24m إذن .EF =
30× 32

40
= 24

(إذا (EF) ⊥ (CD) إذن (CD) ⊥ (AD) و (EF) // (AD) أن نعلم (ب)
الآخر). يعامد فإنه متوازيين مستقيمين أحد مستقيم عامد

,0ن) 75)
. 384m2 تساوي مساحته بالتالي و E في قائم CEF المثلث (ج)

,0ن) 75) S2 =
CE × EF

2
=

32× 24

2
= 384

. 216m2 تساوي الخضراء المساحة منه
,0ن) 5) S = S1 − S2 = 600− 384 = 21610



(1ن) . 4

15
هو للورود المخصصة المساحة عن يعبر الذي الكسر 3

1−
(
1

3
+

2

5

)
= 1−

(
1× 5 + 3× 2

3× 5

)
= 1−

(
5 + 6

15

)

= 1− 11

15
=

15

15
− 11

15
=

15− 11

15
=

4

15

. 57, 6m2 هي للورود المخصصة فالمساحة بالتالي و

(1ن) 4

15
× 216 =

4× 216

15
=

864

15
= 57, 6

,0ن) 5) ... الوحدات، النتائج، معقولية : الانسجام
,0ن) 5) النهائية. النتائج بروز الخط، مقروئية الشطب، عدم : الورقة
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