
 

 

   2022الى  2016من  للشعب العلمیة الوریا الجزائریةباكالمتتالیات في ال ریناتم

  قلیل مصطفى : إعداد الأستاذ  

  ع ت الموضوع الاول 2016التمرین  باك 
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  .ثمَ شكَل جدول تغیراتها fادرس اتجاه تغیر الدالة  - )ب(      
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  1ع ت الموضوع  2016باك حل التمرین 
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  دراسة تغیرات الدالة ثمَ تشكیل جدول تغیراتها ) ب
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إحداثیات تقاطع المنحنى  ) 2 fC قیم    مع المست  : y x    



ة التقاطع هي  4;4A
  

  دون حسابها في  المنحنى أعلاه 

ولنبرهن صحة الخاصیة   1p n      

    0 4nf f u f    
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2یعني أنَ    8x x    2     ومنه 2 8 0x x     

2xحلاها هما        4مرفوضة  وx   ة التقاطع هي نقط
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  :یر وتقارب المتتالیة 
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0:  نحدَد فقط الجزء المعرَف في الجدول و هو 4nu     

0نجد الإشارة موجبة و نعلم أنَ   4nu     1من خلال الجدول نستنتج أنَ   و 0n nu u      

ومنه   nu    متزایدة على 0;  

:  أن   من nإثبات أنَه من اجل كل ) جـ 1

1
4 4

2
n nu u    0حیث 0u     1و 2 2u    

0nمن اجل : باستعمال البرهان بالتراجع     : 1 0

1
4 4

2
u u  

 
4 وهي محققة لأن   2 2 2 
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أي نفرض أن  1

1
4 4

2
n nu u    ونبرهن أن 2 1

1
4 4

2
n nu u     2حیث 12 8n nu u  

 
                                   

       

  1 1

2 1

1

4 2 8 4 2 8
4 4 2 8

4 2 8

n n

n n

n

u u
u u

u

 

 



   
    

   

 
ومنه           

    

   1 1
2

1 1

16 2 8 2 4
4

4 2 8 4 2 8

n n
n

n n

u u
u

u u

 


 

  
  

     

10لدینا سابقا        4nu  
    

10ومنه  2 8nu  
  

18ومنه  8 2 16nu     18ومنه 8 2 4nu  
  

ومنه
 

14 8 4 8 2 8nu    
  

ومنه 
 1

1 1 1

8 4 8 2 4 8nu   
 

  
ومنه

   1

2 2 2

8 4 8 2 4 8nu   
 

و     
 

14وبضرب الأطراف بالعدد الموجب   nu    نجد
  

                   

     1 1 1 1

1

2 4 2 4 2 4 4

8 4 8 2 4 8 2 2

n n n n

n

u u u u

u

   



   


   
 

  

  
1وبما أن   14 4

22 2
n nu u  


  فإننا نجد

 1 1

1

2 4 4

24 8 2

n n

n

u u

u

 



 

 
  أي أن 2 1

1
4 4

2
n nu u       

  

     وبالتالي نستنتج صحة الخاصیة   n+1اذن الخاصیة صحیحة من اجل    :خلاصة
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  ع ت الموضوع الثاني 2016التمرین باك 
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  .ثمَ شكَل جدول تغیراتها fادرس اتجاه تغیَر الدالة ) ب(

من المجال  xبیَن أنَه من أجل كل عدد حقیقي ) 2( 0,  :   0f x     
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n:1برهن بالتراجع أنَه من أجل كل عدد طبیعي ) أ() 1( 3nu    .  

ادرس اتجاه تغیَر المتتالیة ) ب( nu   ثمَ استنتج أنَها متقاربة.  
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3

1n

n

v
u

           

برهن أنَ ) أ(      nv    متتالیة هندسیة أساسها
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   nبدلالة  nuثمَ استنتج عبارة    nvعبارة nاكتب بدلالة ) ب(     

:احسب نهایة المتتالیة ) جـ(     nu    
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 

2

10

2
f x

x
 


ومنه  بما أنَ      0f x    َموجبة  فإن

f  متزایدة على المجال 0;  

  جدول التغیرات               



 

 

من   xإثبات أنَ من أجل كل  ) 2( 0;    َفإن  0f x   
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. f الدالة المعرَفة على المجال 4;1 كما یلي :

  3 16

11

x
f x

x





ولیكن   fC   ، المنحنى الممثل لها ذو المعادلة  المستقیمy x  

( )  تحقق أنَ الدالةfمتزایدة تماما على 4;1 َمن أجل كل هثمَ بیَن أن 4;1x  َفإن :   4;1f x    

( )  nu   0متتالیة معرَفة بحدَها الأول 0u   ومن اجل كل عدد طبیعيn ، 1n nu f u .  

انقل الشكل المقابل ثمَ مثَل على حامل محور الفواصل ) 1(

   3uو  0u ،1u،2uالحدود  

  ) لایطلب حساب الحدود( 

ثمَ ضع تخمینا حول اتجاه تغیر المتتالیة   nu وتقاربها.  

، nبرهن بالتراجح أنَه من أجل كل عدد طبیعي ) 2(

4 0nu   

ثمَ بیَن أنَ المتتالیة   nu   متناقصة تماما.  

لتكن المتتالیة العددیة ) 3( nv  من اجل كل : المعرَفة كما یلي

n  ،1عدد طبیعي  4n n nv u v    

لیةأثبت انَ المتتا nv  حسابیا أساسها
1

7
، ثمَ احسب المجموع  

S  0حیث 0 1 1 2016 2016...S v u v u v u        

  :  2ع ت الموضوع  2017باك  التمرینحل 

   fمعرَفة على 4;1   حیث :  3 16

11

x
f x

x





    

( ) اثبات انf   متزایدة تماما على المجال 4;1:   
 2
49

0
11

f x
x

 


 ومنهf متزایدة تماما على 4;1   

یان انه من اجل تب -   4;1x    َفإن :   4;1f x   :  



 

 

 4;1x  4تعني 1x   وبما انf متزایدة تماما فان     4 1f f x f    ونجد:

 
13

4 1
12

f x        اذن   4;1f x    

( )   nu  0متتالیة حیث 0u    ، 1n nu f u  .   

   3uو  0u ،1u ،2uتمثیل الحدود ) 1(

نخمن ان nu  متناقصة ومتقاربة  

4: البرهان بالتراجح أنَ ) 2( 0nu    

0nمن اجل    :04 0u   محققة  

ونبرهن انها صحیحة من اجل   nنفرض الخاصیة صحیحة من اجل  

1n  4اي نفرض 0nu    14ونبرهن ان 0nu    .  

4لدینا   0nu   وبما ان الدالةf متزایدة تماما على 4;1  فان     4 0nf f u f   اي

1

16
4

11
nu       وبما ان

16
0

11
   14فان 0nu     

4فان  nومنه من اجل كل      0nu    اي ان المتتالیة nu محدودة  

تبیان أنَ  -   nu  متناقصة تماما :
 

22
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

    
    

  
  

4من السؤال السابق لدینا  0nu   11ومنه 0nu    و 
2

4 0nu    1: وبالتالي 0n nu u    

اذن المتتالیة   nu متناقصة تماما  

)3( nv  1: متتالیة معرَفة كما یلي 4n n nv u v     : ومنه
1

4
n

n

v
u




   

اثبات انَ المتتالیة   nv  حسابیا أساسها
1

7
  :1

1

111 1

3 164 7 284
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




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 
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 1

11 11 7 41 1

7 28 4 7 28 7 4 7
n n n
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

   
     

   
   

اذن    nv  حسابیا أساسها
1

7
0و حدها الاول  

1

4
v    

S   :      1حساب المجموع    4n n nv u v      ومنه

     

     
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1 1 2016 8071
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v v          ومنه
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  الموضوع الاول  یاضير  قنيت  2017التمرین باك 

المعرفة على المجال fنعتبر الدالة العددیة  ,1 بـ :  1

2
f x

x



. C  تمثیلها البیاني في المستوي  

المنسوب الى المعلم المتعامد و المتجانس  , ,O i j
 

و لیكن    المستقیم ذا المعادلةy x.  

 nu 0المتتالیة العددیة المعرفة بحدها الاول حیثuحیث

0 1u  .  

n،و من اجل كل عدد طبیعي  1n nu f u .  

  اعد رسم الشكل المقابل ثم مثل على حامل محور الفواصل ) 1(

  مبرزا خطوط التمثیل ، 3uو 0u  ،1u،2uالحدود 

ثم ضع تخمینا حول اتجاه تغیر المتتالیة   nu و تقاربها.  

n ،1nuمن اجل كل عدد طبیعي: برهن بالتراجع أن ) 2(   

تغیر المتتالیة  ادرس اتجاه) 3( nv  ثم استنتج انها متقاربة.  

نعتبر المتتالیة  ) 4( nv من اجل كل عدد طبیعي : المعرفة كما یليn،
2

1
n

n

v
u




  

برهن ان المتتالیة  ) أ( nv  ثم عین عبارة حدها العام 2حسابیة اساسهاnv بدلالةn.  

limو احسب  uبدلالة  nu استنتج عبارة الحد العام) ب(
nn
u


 

  :ت ر الموضوع   2017التمرین باك حل  

f معرفة على المجال ,1 كمایلي :  1

2
f x

x



.  

0 1u     ومن أجل كلn N  : 1n nu f u   

  :  3uو 0u  ،1u،2uتمثیل الحدود ) 1(

0نلاحظ من المنحنى أن  1 2 3u u u u    ومنه المتتالیة

 nu  تبدو متزایدة تماما ومتقاربة وتتقارب نحو فاصلة

نقطة تقاطع  C   مع المستقیم ذو المعادلةy x.  

n:1nuبرهان أنه من اجل كل) 2(    

0nمن أجل          0لدینا 1 1u      صحیحة الخاصیة ومنه  

1nمن أجل صحیحة هاونبرهن أنَ   nمن أجل كل  صحیحةها أنَ نفرض      َ1أي نفرض أنnu   َ1ونبرهن أن 1nu    

1nuلدینا فرضا    َوبما أنf ایدة على متز ,1  َفإن   1nf u f أي 
1

2 1
nf u


 1ومنه 1nu    

1nuفإن nنستنتج أنه من أجل كل عدد طبیعي    

دراسة اتجاه تغیر المتتالیة ) 3( nu واستنتاج انها متقاربة:  

لدینا  
 221 2 1 1

2 2 2

x x x
f x x x

x x x

  
    

  
2و نعلم أن   0x   على ,1  

ومنه   0f x x  من أجل كلx  من المجال ,1 1 وهذا یعني 0n nu u    ومنه nu متزایدة تماما.  



 

 

بما أنَ المتتالیة :  الإستنتاج nu  فهي متقاربة  1متزایدة ومحدودة من الأعلي بالعدد.  

)4 ( nv معرفة من أجل كلn  بـ :
2

1
n

n

v
u




  

إثبات أنَ ) أ( nv  2حسابیة اساسها:  

1لدینا 

1 1

2 2 2 2 2 2

11 1 1 1 11
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 
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     2 2 2 2 2 2 12
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1 1 1 1
n n n
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u u u

u u u u

   
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   
  

1أي  2n nv v   نه المتتالیة وم nv 0وحدها الأول 2حسابیة أساسها

0

2 2
1

1 1 1
v

u
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 
  

 عبارة الحد العامnv   بدلالةn:  

0nv v nr    1أي 2nv n   

limو حساب  nبدلالة  nuاستنتاج عبارة الحد العام   ) ب(    n
n

u


:  

لدینا   
2

1
n

n

v
u




ومنه    
2

1 n

n

u
v

 ومنه
22

1 n
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
  یهوعل 

1 2 2

1 2
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 
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
ومنه    

2 1
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
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
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n
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    :الثاني شعبة ریاضیات الموضوع  2017التمرین باك 

نعتبر المتتالیة العددیة  nu َفة على المعر 0بحدها الأوَل 1u   

n ،1ومن أجل كل عدد طبیعي  7 8n nu u  .  

n ،13من أجل كل عدد طبیعي : برهن بالتراجح أنَ ) 1( 7 4n
nu

 .  

n:21ضع من أجل كل عدد طبیعي ن) 2( 7 7 ..... 7nnS       0و 1 ...n nS u u u    .  

nSو  nSثم جد علاقة بین  nSالمجموع   nاحسب بدلالة  - )أ(     .  

n  ،218من أجل كل عدد طبیعي : استنتج أنَ  - )ب(   7 24 31n
nS n   .  

  .5على 7nبواقي قسمة العدد  nادرس حسب قیم العدد الطبیعي  - )أ() 3(

nSالطبیعیة حتى یكون   nقیم عیَن  -)ب(       5قابلا للقسمة على.  

  

    2ریاضي الموضوع  2017حل التمرین باك 

 nu  0معرَفة بحدها الأوَل 1u   ومن أجل كلn : 1 7 8n nu u   .  

n  :13البرهان بالتراجع أنَه من أجل كل ) 1( 7 4n
nu

  .  



 

 

0nمن اجل    0نجد 1
03 7 4u    03وهي محققة  لان 3u   0و 17 4 3    

13نفرض  ان  7 4n
nu

    ونبرهن ان: 
2

13 7 4n
nu


    

13: لدینا فرضا  7 4n
nu

    1ومن جهة اخرى 7 8n nu u     اذن: 13 3 7 8 21 24n n nu u u      ومنه

   1 2
13 21 24 7 3 24 7 7 4 24 7 28 24n n

n n nu u u  
           2اذن

13 7 4n
nu


    ومنه

   nالخاصیة صحیحة من اجل كل 

 )2 (21 7 7 ..... 7nnS          0و 1 ...n nS u u u     .  

هو مجموع :  nSالمجموع   nحساب بدلالة  -)أ( 1n  اذن .   7و اساسها  1حد لمتتالیة هندسیة حدها الاول

 
1

17 1 1
1 7 1
7 1 6

n
n

nS



   


   

0 1 ...n nS u u u       0وهذا یكافئ 13 3 3 ... 3n nS u u u      ونعلم انه من اجل كلn  13لدینا 7 4n
nu

   

  ومنه 

     1 2 13 7 4 7 4 ... 7 4n
nS

         وتكافئ   2 13 7 7 7 4 1n
nS n        ومنه

       
1

17 1 7
3 7 4 1 7 1 4 1 7 4 1

7 1 6

n
n

n nS n n S n


 
            

 
ومنه     

 7 4
1

3 3
n nS S n      وهي العلاقة المطلوبة  

n  :218استنتاج أنَ من أجل كل  -)ب( 7 24 31n
nS n    .  

:من العلاقة السابقة    
7 4

1
3 3

n nS S n       ولدینا سابقا 11
7 1

6
n

nS
    ومنه

       17 4 1
18 18 1 42 24 1 42 7 1 24 1

3 3 6
n

n n nS S n S n n              
 

  

اذن      2 218 7 7 24 1 7 24 31n n
nS n n          

  : 5على  7nدراسة بواقي قسمة العدد  - )أ() 3(

 07 1 5   و 17 2 5  و 27 4 5   و 37 3 5  و 47 1 5  ومنه نستنتج بواقي القسمة  

4nاذا كان  k  7فان باقي قسمةn  اي      1هو  5على 47 1 5k    

4اذا كان  1n k   7فان باقي قسمةn  اي      2هو  5على 4 17 2 5k   

4اذا كان  2n k   7فان باقي قسمةn  اي     4هو  5على 4 27 4 5k   

4اذا كان  3n k   7فان باقي قسمةn  اي     3هو  5على 4 37 3 5k   

nSحتى یكون    nتعیین قیم  -ب    اي : 5قابلا للقسمة على 0 5nS      اولیین فیما  18و  5وبما ان العددین

بینهما فان  0 5nS    تكافئ  

  18 0 5nS       اي ان 27 24 31 0 5n n      وبما ان 24 1 5   و 31 1 5  فان   :

 27 1 0 5n n      

  . في الحالات الاربعة   nونعوض   

4nاذا كان  - ) 1(الحالة    k  نجد : 4 27 4 1 0 5k k     وتعني 4 4 1 0 5k   ي ا 4 3 5k    اي

 3 5k   ومنه  

  3 5k   5ومنه 3k     وبالتالي : 4 5 3n    20اذن 12n    حیث    
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  الموضوع الثاني الاستثنائي  2017باك ریاضي التمرین 

نعتبر المتتالیة   nu 0المعرفة بحدها الأول 0u    ومن اجل كل عدد طبیعيn:  1 4 1n nu u    
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14غیر المعدوم  القاسم المشترك الأكبر للعددین الطبیعیین nعین بدلالة )3( 1n  4و 1n   
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6:  لعدد حتى یقبل ا nعین قیم العدد الطبیعي  - )ب(  49 6 3 n
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  : الاستثنائي  الموضوع الثاني  2017حل التمرین باك ریاضي 
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nu   0: حیث 0u   

التحقق   0
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لدینا  nمن أجل كل عدد طبیعي) 2(
1

3
n nv u .  

أنَ المتتالیة  إثبات -)أ( nv1هندسیة 1

1 1
4 1

3 3
n n nv u u     1ومنه

4 1
4 4

3 3
n n nv u u

 
    

 
  

1أي أن 4n nv u    إذن المتتالیة nv  0وحدها الأول   4هندسیة وأساسها 0

1 1

3 3
v u  .  



 

 

:   nSعن المجموع  nالتعبیر بدلالة  -)ب(
3 1

0 1 2 3 0

1
...

1

n

n n

q
S v v v v v

q

 
       

 
  

أي     
3 1

3 11 4 1 1
4 1

3 4 1 9

n
n

nS


 
   

 
  

:  تعییین القاسم المشترك الأكبر - 1
4 1

3
n

nu    ومنه 3 4 1n
nu     و 1

13 4 1n
nu


    

     1
1 14 1;4 1 3 ;3 3 ;n n

n n n nPGCD PGCD u u PGCD u u
      

ومنه   14 1;4 1 3n nPGCD       َلأن 1; 1n nPGCD u u   

  .7على  4nبواقي القسمة الإقلیدیة للعدد  nدراسة حسب قیم العدد الطبیعي  - )أ() 4(
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  علوم تجریبیة الموضوع الأول  2018باك  التمرین
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  : علوم تجریبیة الموضوع الأول 2018باك حل التمرین 
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إذن  1

3
1 1 0
4

n nu u      ومنه 1

3
1 1
4

n nu u     .  

: استنتاج  من أجل كل عدد طبیعي  ) ب(
3

1 2
4

n

nu
 

    
 

 :  

n  :من السؤال السابق لدینا  من اجل كل عدد طبیعي   1

3
1 1
4

n nu u     

وهذا یعني   1 0

3
1 1
4

u u     وبضرب الطرفین بالعدد :
3

4
: نجد    

2

1 0

3 3
1 1

4 4
u u

 
   

 
و    

 2 1

3
1 1
4

u u      ومنه 
2

2 0

3
1 1

4
u u

 
   

 
  

و  3 2

3
1 1
4

u u    ....  ....  ...........و 1 2

3
1 1
4

n nu u     

و          1

3
1 1
4

n nu u   وحسب الخاصیة
3

4
a b  و

3

4
b c اذن

3 3

4 4
a c   

نجد 0

3 3 3
1 ... 1
4 4 4

n

n fois

u u     


أي  
3

1 2
4

n

nu
 

    
 

  .وهو المطلوب 

لدینا :   حساب النهایة   -
3

1 2
4

n

nu
 

    
 
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هو مجموع    1n وأساسها  1حد لمتتالیة هندسة حدها الأول
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  1م الشعبة علوم تجریبیة    2019التمرین باك 

)المتتالیةالعددیة  )nu  0:معرفة بـ 13u   و من أجل كل عدد طبیعيn  ,1

1 4

5 5
n nn u    

n ،1nuبرهن  بالتراجع انه من اجل كل عدد طبیعي) أ( )1(   

ادرس اتجاه تغیر المتتالیة) ب( nu و استنتج انها متقاربة.  

)2( nv المتتالیة العددیة المعرفة على  بـ: ln 1n nv u   

أثبت أن المتتالیة  nvحسابیة یطلب تعیین أساسها و حدها الأول.  
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1nu : فان nالبرهان بالتراجع انه من اجل كل عدد طبیعي ) أ() 1(    :  

0nمن اجل      :0 1u   0لدینا 13 1u   فهي محققة.  
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  2الموضوع  علوم تجریبیة 2019باك التمرین 

f على المجالالدالة المعرفة 4;7 ب:  2 4f x x    

متزایدة تماما على المجال fبین ان الدالة) أ() 1( 4;7  

من المجال xمن اجل كل عدد حقیقي: استنتج انه ) ب( 4;7  فإن : ( ) 4;7f x   

من المجال xمن اجل كل عدد حقیقي: برهن انه ) 2( 4;7  فإن
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من المجال xمن أجل كل عدد حقیقي: ثم استنتج أنه  4;7  فإن( ) 0f x x   

)3 (( )nu 0: عرفة بـ المتتالیة العددیة الم 4u   و من أجل كل عدد طبیعيn :1 ( )n nu f u   

n :4من اجل كل عدد طبیعي : برهن بالتراجع أنه ) أ( 7nu   

)استنتج اتجاه تغیر المتتالیة) ب( )nu  ثم بین انها متقاربة  
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   ثم احسب نهایة المتتالیة ،( )nu  

  2م علوم تجریبیة 2019باك  التمرین  حل

   2  2 4f x x    

تقبل الاشتقاق على fالدالة ) أ()1( 4;7  ومنه
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متزایدة تماما على  fاذن الدالة 4;7.  

لینا ) ب(   4;7x 4ومنه 7x 6ومنه 2 9x  6ومنه 2 3x  ومنه

6 4 2 4 7x    4ومنه 6 4 ( ) 7f x    أي ( ) 4;7f x .  
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بما ان  4;7x  4فان 2 0x x    وبالتالي إشارة( )f x x 2من نفس إشارة 9 14x x  .  

2إشارة  9 14x x   :28  2ومنه له جذران هما 7x   .  1 2x .  وبما ان   4;7x  

)اذن    ) 0f x x   2لان 0x  7و 0x   

0nمن اجل  : البرهان بالتراجع  )أ() 3( 04نجد 4 7u  اذن الخاصیة الابتدائیة محققة.  

4نفرض ان  *         7nu  عدد طبیعي كل  محققة من اجلn 14ونبرهن ان 7nu  محققة كذلك  
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  2شعبة ریاضیات الموضوع  2022باك التمرین 
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